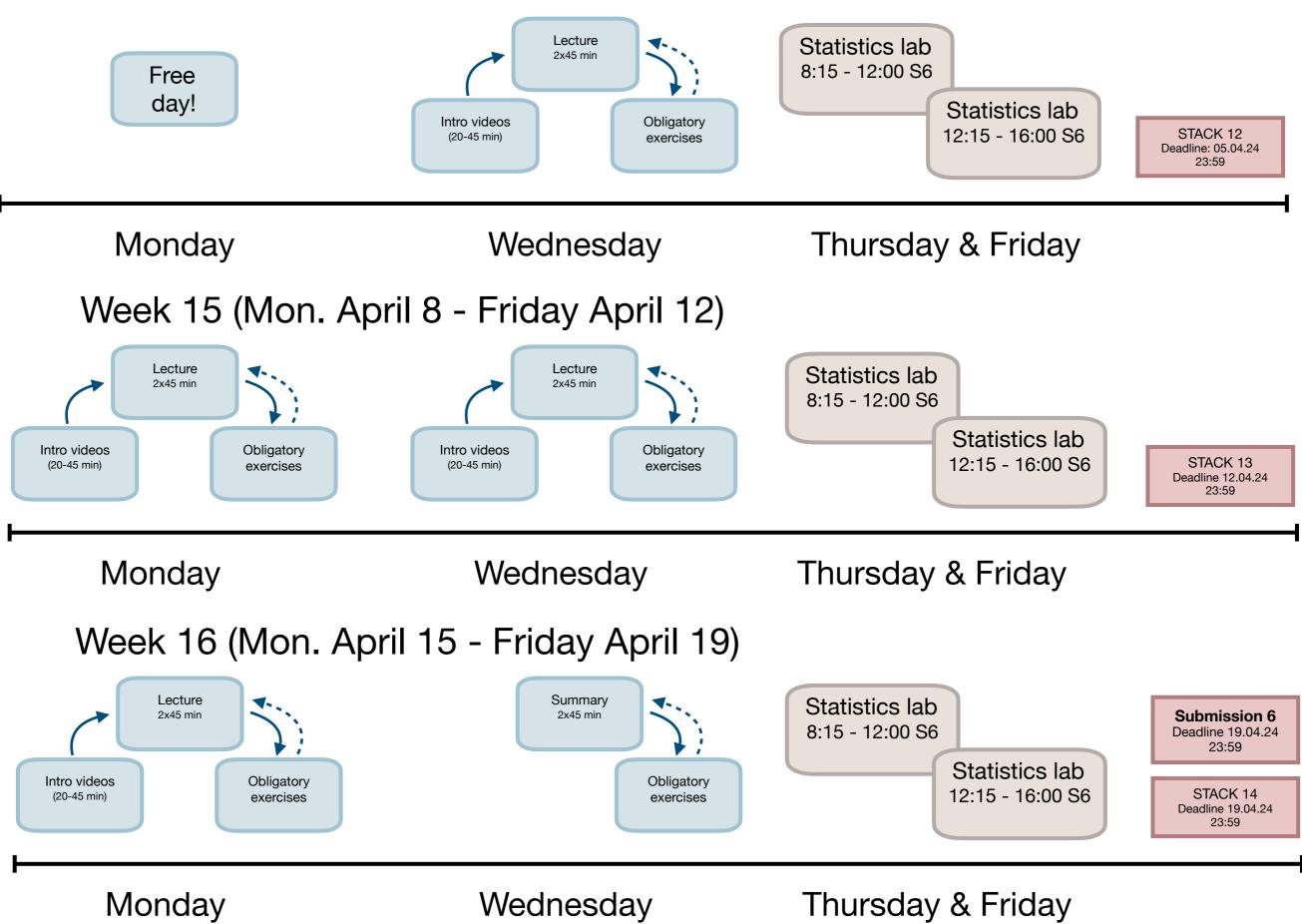
TMA4245 Statistikk

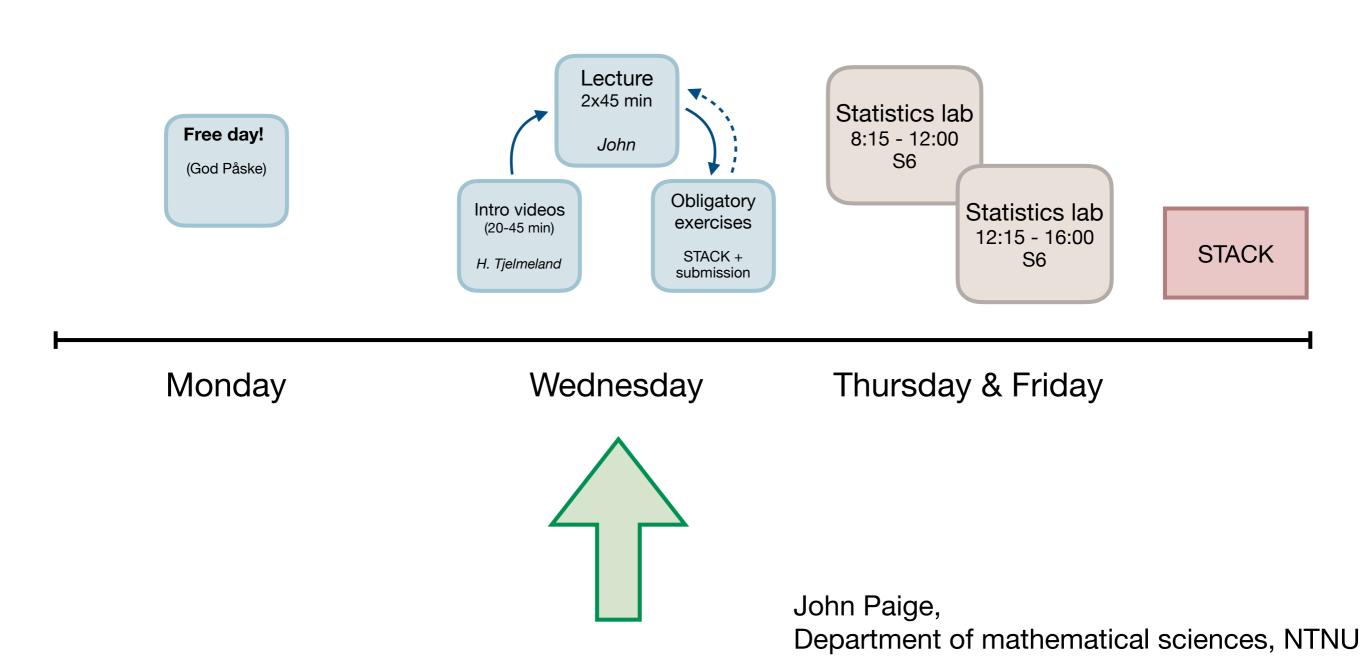
Week 14 - Wednesday

Week 14 (Mon. April 1 - Friday April 5)

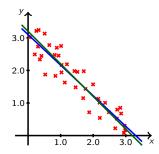


TMA4245 Statistikk

Week 14 - Wednesday



Simple linear regression: motivation



Goal: we wish to predict a random variable, Y, based on a related quantity, x

Y is the 'dependent' variable, or 'response'

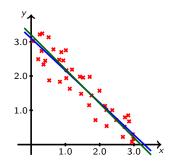
x is the 'independent' or 'explanatory' variable

• Assume $E[Y] = \beta_0 + \beta_1 x$

• i.e. assume $Y = \beta_0 + \beta_1 x + \varepsilon$ with $E[\varepsilon] = 0$

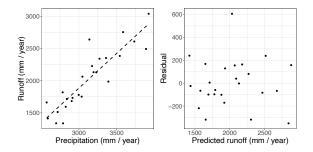
Estimate β₀ and β₁ as β̂₀ and β̂₁ by minimizing sum of squared errors (maximum likelihood is an alternative with slightly different assumptions)

Simple linear regression: motivation



- Simple linear regression is central to modern statistics
- Simple linear regression can be generalized to allow for:
 - Multiple explanatory variables (linear regression)
 - Nonlinear relationships (generalized additive models)
 - Non-Gaussian responses (generalized linear models)
 - Random explanatory variables (linear and generalized linear mixed models)

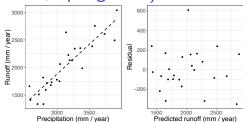
etc.



Assume the following linear relationship between annual runoff Y and annual precipitation x within a drainage basin,

$$Y = \beta_0 + \beta_1 x + \varepsilon, \tag{1}$$

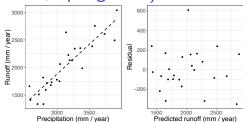
where β_0 and β_1 are unknown constants and ε is normally distributed with expected value (mean) 0 and unknown variance σ^2 .



Questions:

1. How can 'least squares' be used to find estimators for β_0 and β_1 under the assumption that, for i = 1, ..., 25,

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i?$$

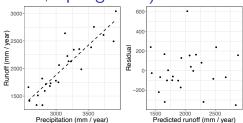


Questions:

1. How can 'least squares' be used to find estimators for β_0 and β_1 under the assumption that, for i = 1, ..., 25,

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i?$$

2. What assumptions are necessary for linear regression?



Questions:

1. How can 'least squares' be used to find estimators for β_0 and β_1 under the assumption that, for i = 1, ..., 25,

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i?$$

- 2. What assumptions are necessary for linear regression?
- 3. Is linear regression reasonable for this problem? (Recall that $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, where 'iid' means independent and identically distributed)

Last winter, on Sundays, Alexander sold cups of hot chocolate by the ski tracks near his house. This winter he plans to have a similar business. Alexander experienced that the sales changed dramatically with the weather and skiing conditions. He made a condition index, x, where x = 1 means "bad conditions", x = 2means "good conditions", x = 3 means "very good conditions" and x = 4 means "excellent conditions".

For 20 Sundays, i = 1, ..., 20, he registered both the number of cups sold, denoted y_i , and the associated condition index, x_i . We will phrase the sales as a regression model taking condition as an explanatory variable:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, 20,$$

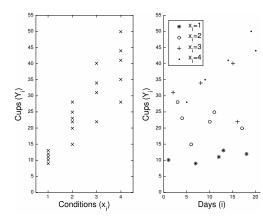
where $\epsilon_1, \ldots, \epsilon_{20}$ are independent normal distributed variables with expected value 0 and variance σ^2 , and β_0 and β_1 are fixed but unknown regression parameters.

Based on the data:

$$\bar{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 2.45$$

 $\bar{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 25.65$
 $\sum_{i=1}^{20} (x_i - \bar{x})^2 = 24.95$
 $\sum_{i=1}^{20} (x_i - \bar{x})y_i = 237.15$
 $\frac{1}{18} \sum_{i=1}^{20} (y_i - \hat{\beta}_0 - \hat{\beta}_1)^2 = 5.65^2$

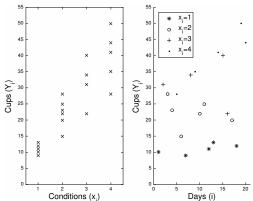
Questions:



Based on the data: $\bar{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 2.45$ $\bar{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 25.65$ $\sum_{i=1}^{20} (x_i - \bar{x})^2 = 24.95$ $\sum_{i=1}^{20} (x_i - \bar{x})y_i = 237.15$ $\frac{1}{18} \sum_{i=1}^{20} (y_i - \hat{\beta}_0 - \hat{\beta}_1)^2 = 5.65^2$

Questions:

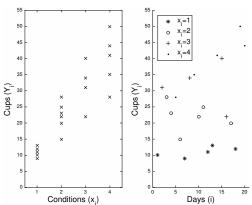
 Do the modeling assumptions look reasonable from this plot? Why or why not?



Based on the data: $\bar{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 2.45$ $\bar{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 25.65$ $\sum_{i=1}^{20} (x_i - \bar{x})^2 = 24.95$ $\sum_{i=1}^{20} (x_i - \bar{x})y_i = 237.15$ $\frac{1}{18} \sum_{i=1}^{20} (y_i - \hat{\beta}_0 - \hat{\beta}_1)^2 = 5.65^2$

Questions:

- Do the modeling assumptions look reasonable from this plot? Why or why not?
- 2. Calculate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$.



Logistics

- Karina Lilleborge will lecture Monday April 8
- Team based learning on Monday April 15
 - This session may be recorded to some extent (via video, photos). I will ask for your permission for this at the class session.

Week 14 (Mon. April 1 - Friday April 5)

