
TMA4245 Statistikk
Week 15 - Wednesday



Free 
day!

Monday Wednesday

Intro videos

(20-45 min)


Lecture

2x45 min


Obligatory 
exercises


Thursday & Friday

Statistics lab

8:15 - 12:00 S6

Statistics lab

12:15 - 16:00 S6 STACK 12


Deadline: 05.04.24

23:59

STACK 13

Deadline 12.04.24


23:59

Week 14 (Mon. April 1 - Friday April 5)

Week 15 (Mon. April 8 - Friday April 12)

Monday Wednesday Thursday & Friday

Intro videos

(20-45 min)


Lecture

2x45 min


Obligatory 
exercises


Intro videos

(20-45 min)


Lecture

2x45 min


Obligatory 
exercises


STACK 14

Deadline 19.04.24


23:59

Submission 6 
Deadline 19.04.24


23:59

Week 16 (Mon. April 15 - Friday April 19)

Monday Wednesday Thursday & Friday

Summary

2x45 min


Obligatory 
exercises


Intro videos

(20-45 min)


Lecture

2x45 min


Obligatory 
exercises


Statistics lab

8:15 - 12:00 S6

Statistics lab

12:15 - 16:00 S6

Statistics lab

8:15 - 12:00 S6

Statistics lab

12:15 - 16:00 S6



Brief review: E↵ect of " assumptions

If x has has linear relationship with y

and xi are fixed numbers:

1. E ["1] = . . . = E ["n] = 0 )

E [↵̂] = ↵

E [�̂] = �

2. "1, . . . , "n are iid with mean 0 and
variance �2 )

Var(↵̂) =
�2Pn

i=1 x
2
iPn

i=1(xi � x̄)2

Var(�̂) =
�2

n
Pn

i=1(xi � x̄)2

3. "1, . . . , "n
iid⇠ N(0,�2) )

↵̂ ⇠ N

✓
↵,

�2Pn
i=1 x

2
iPn

i=1(xi � x̄)2

◆

�̂ ⇠ N

✓
�,

�2

n
Pn

i=1(xi � x̄)2

◆

Notes:

I ↵̂ and �̂ are still approximately
normal under 2. provided n is
large enough.

I In this class we assume 3. is
necessary for simple linear
regression unless otherwise
stated
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Brief review

Assuming "1, . . . , "n
iid⇠ N(0,�2):

↵̂ ⇠ N

✓
↵,

�2Pn
i=1 x

2
i

n
Pn

i=1(xi � x̄)2

◆

�̂ ⇠ N

✓
�,

�2
Pn

i=1(xi � x̄)2

◆
.

But �2 is unknown! Must instead be estimated. MLE (SME) is:

�̂2 =
1

n

nX

i=1

(yi � (↵̂+ �̂xi ))
2,

What can we say about ↵̂, �̂ if �2 is unknown?
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Recall:

n�̂2

�2
⇠ �2

n�2 and
(n � 2)S2

�2
⇠ �2

n�2

for S2 = 1
n�2

Pn
i=1(yi � (↵̂+ �̂xi ))2.

Also:
Zq
V
⌫

⇠ t⌫

for Z ⇠ N(0, 1) and V ⇠ �2
⌫ independent.

Also, S2 is independent of ↵̂, �̂!



Brief review

Hence, we get the following pivotal quantities under H0:

↵̂� ↵0r
S2

Pn
i=1 x

2
i

n
Pn

i=1(xi�x̄)2

⇠ tn�2

�̂ � �0q
S2 1Pn

i=1(xi�x̄)2

⇠ tn�2.



Brief review

Similar logic shows, for prediction at x0 given by µ̂0 = ↵̂+ �̂x0:

E [µ̂0] = ↵+ �x0 = µ0

Var(µ̂0) = �2

✓
1

n
+

(x0 � x̄)2Pn
i=1(xi � x̄)2

◆
,

and:
µ̂0 � µ0r

S2
⇣
1
n + (x0�x̄)2Pn

i=1(xi�x̄)2

⌘ ⇠ tn�2.



Constructing confidence intervals

We can then use the pivotal quantities to construct
(1� ↵)⇥ 100% confidence intervals:

✓̂ � ✓0p
S2 · C

⇠ tn�2

�t↵/2,n�2 <
✓̂ � ✓0p
S2 · C

< t↵/2,n�2

�t↵/2,n�2

p
S2 · C <✓̂ � ✓0 < t↵/2,n�2

p
S2 · C

�✓̂ � t↵/2,n�2

p
S2 · C <�✓0 < �✓̂ + t↵/2,n�2

p
S2 · C

✓̂ � t↵/2,n�2

p
S2 · C <✓0 < ✓̂ + t↵/2,n�2

p
S2 · C ,

for constant C . This gives us the tools we need for hypothesis
testing and confidence intervals!



Runo↵ (based on problem 3, Spring 2019)
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(a) Precipitation xi against runo� yi.
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(b) Fitted runo� �yi against residuals ei.

Figure 1: Observations (xi, yi) and fitted regression line �yi = ��0 + ��xi, and fitted
runo� �yi against residuals ei.

a) Briefly explain how the least squares method can be used to find estimators
of �0 and �1, and illustrate by drawing a figure. You are not required to
derive the expressions of the estimators.
Consider the fitted model shown in Figure 1.
Discuss briefly whether it is reasonable to use a linear regression model. In
particular, state (briefly) what assumptions must be satisfied for a linear
regression model to be used.

Assume that we now are interested in predicting future runo� for a new year Y0
given annual precipitation x = x0, from the model defined in (1), where (x0, Y0) is
independent of (x1, Y1), (x2, Y2), . . . , (x25, Y25). It is given that �Y0 = ��0 + ��1x0 is a
reasonable point estimator for the expected runo� µY |x0 = �0 + �1x0 when annual
precipitation is x0. It is given that ��0 = �1364 and ��1 = 1.08.

You can further in the problem use (without proof) that (n�2)S2

�2 � �2
n�2, that is,

chi-squared distributed with n � 2 degrees of freedom. You can also use that Ȳ
and ��1, and �Y0 and (n�2)S2

�2 are independent random variables.

Page 2 of 6 TMA4245 STATISTICS 7 June 2019

The consultancy firm has collected the power consumptions x1, x2, . . . , x17 from 17
housing units that on average consumed x̄ = 1

17
�17

i=1 xi = 3200 kilowatt hours a
year with a sample standard deviation of s =

�
1
16
�17

i=1(xi � x̄)2 = 300 kilowatt
hours for charging an electric car.

a) Formulate the above question as a hypothesis test.
Perform the hypothesis test that you specified with a significance level of
� = 0.05. In particular, state the probability distribution of the test statistic
that you use.
Can the housing cooperative, based on the result of the hypothesis test,
conclude that the power consumption is higher than 3000 kilowatt hours?

Problem 3 Runo�

The annual runo� Y (millimetres per year) is a measure of how large portion of
the annual precipitation (millimetres per year) in a specific area, often called a
drainage basin, that runs out in connected waterways. The di�erence between
annual precipitation and annual runo� is assumed to have evaporated from the
drainage basin.

Assume the following linear relationship between annual runo� Y and annual pre-
cipitation x within a drainage basin,

Y = �0 + �1x + �, (1)
where �0 and �1 are unknown constants and � is normally distributed with expected
value (mean) 0 and unknown variance �2.

Hydrologists have collected independent observations from the drainage basin of
interest over a period of 25 years, that is, a random sample (x1, Y1), (x2, Y2), . . . ,
(x25, Y25) from the model defined in (1). It is given that the following are unbiased
estimators of �1, �0 and �2, respectively:

��1 =
�25

i=1(xi � x̄)Yi�25
i=1(xi � x̄)2

��0 = Ȳ � ��1x̄

S2 = 1
23

25�

i=1

�
Yi � ��0 � ��1xi

�2
.

(2)

In Figure 1a, the observed values (x1, y1), (x2, y2), . . . , (x25, y25) are shown together
with the fitted regression line �yi = ��0 + ��xi.

I Figure 1b, the fitted runo� �yi is plotted against the residuals ei = yi � �yi.



Runo↵ (based on problem 3, Spring 2019)
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(a) Precipitation xi against runo� yi.
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(b) Fitted runo� �yi against residuals ei.

Figure 1: Observations (xi, yi) and fitted regression line �yi = ��0 + ��xi, and fitted
runo� �yi against residuals ei.

a) Briefly explain how the least squares method can be used to find estimators
of �0 and �1, and illustrate by drawing a figure. You are not required to
derive the expressions of the estimators.
Consider the fitted model shown in Figure 1.
Discuss briefly whether it is reasonable to use a linear regression model. In
particular, state (briefly) what assumptions must be satisfied for a linear
regression model to be used.

Assume that we now are interested in predicting future runo� for a new year Y0
given annual precipitation x = x0, from the model defined in (1), where (x0, Y0) is
independent of (x1, Y1), (x2, Y2), . . . , (x25, Y25). It is given that �Y0 = ��0 + ��1x0 is a
reasonable point estimator for the expected runo� µY |x0 = �0 + �1x0 when annual
precipitation is x0. It is given that ��0 = �1364 and ��1 = 1.08.

You can further in the problem use (without proof) that (n�2)S2

�2 � �2
n�2, that is,

chi-squared distributed with n � 2 degrees of freedom. You can also use that Ȳ
and ��1, and �Y0 and (n�2)S2

�2 are independent random variables.

Assume that we now are interested in predicting future runo↵ for a
new year µ0 given annual precipitation x = x0, from the model
defined in (1), where (x0,Y0) is independent of (x1,Y1), (x2,Y2),
. . . , (x25,Y25). Assume that Ŷ0 = �̂0 + �̂1x0 is a reasonable point
estimator for the expected runo↵ µY |x0 = �0 + �1x0 when annual

precipitation is x0. Assume �̂0 = �1364, �̂1 = 1.08, and
S
2 = 1562.
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(a) Precipitation xi against runo� yi.
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(b) Fitted runo� �yi against residuals ei.

Figure 1: Observations (xi, yi) and fitted regression line �yi = ��0 + ��xi, and fitted
runo� �yi against residuals ei.

a) Briefly explain how the least squares method can be used to find estimators
of �0 and �1, and illustrate by drawing a figure. You are not required to
derive the expressions of the estimators.
Consider the fitted model shown in Figure 1.
Discuss briefly whether it is reasonable to use a linear regression model. In
particular, state (briefly) what assumptions must be satisfied for a linear
regression model to be used.

Assume that we now are interested in predicting future runo� for a new year Y0
given annual precipitation x = x0, from the model defined in (1), where (x0, Y0) is
independent of (x1, Y1), (x2, Y2), . . . , (x25, Y25). It is given that �Y0 = ��0 + ��1x0 is a
reasonable point estimator for the expected runo� µY |x0 = �0 + �1x0 when annual
precipitation is x0. It is given that ��0 = �1364 and ��1 = 1.08.

You can further in the problem use (without proof) that (n�2)S2

�2 � �2
n�2, that is,

chi-squared distributed with n � 2 degrees of freedom. You can also use that Ȳ
and ��1, and �Y0 and (n�2)S2

�2 are independent random variables.

Assume �̂0 = �1364, �̂1 = 1.08, and S
2 = 1562. Questions:

1. Show that µ̂0 is unbiased

2. Show that Var(µ̂0) = �2
⇣
1
n + (x0�x̄)2Pn

i=1(xi�x̄)2

⌘

3. Assume the average yearly precipitation in a year, x̄ , is 3200
mm/yr. Predict runo↵ for an average year.

4. Give a 95% confidence interval for the average runo↵ in a year
with average precipitation.
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(b) Fitted runo� �yi against residuals ei.

Figure 1: Observations (xi, yi) and fitted regression line �yi = ��0 + ��xi, and fitted
runo� �yi against residuals ei.

a) Briefly explain how the least squares method can be used to find estimators
of �0 and �1, and illustrate by drawing a figure. You are not required to
derive the expressions of the estimators.
Consider the fitted model shown in Figure 1.
Discuss briefly whether it is reasonable to use a linear regression model. In
particular, state (briefly) what assumptions must be satisfied for a linear
regression model to be used.

Assume that we now are interested in predicting future runo� for a new year Y0
given annual precipitation x = x0, from the model defined in (1), where (x0, Y0) is
independent of (x1, Y1), (x2, Y2), . . . , (x25, Y25). It is given that �Y0 = ��0 + ��1x0 is a
reasonable point estimator for the expected runo� µY |x0 = �0 + �1x0 when annual
precipitation is x0. It is given that ��0 = �1364 and ��1 = 1.08.

You can further in the problem use (without proof) that (n�2)S2

�2 � �2
n�2, that is,

chi-squared distributed with n � 2 degrees of freedom. You can also use that Ȳ
and ��1, and �Y0 and (n�2)S2

�2 are independent random variables.

Assume �̂0 = �1364, �̂1 = 1.08, and S
2 = 1562. Questions:

1. Show that µ̂0 is unbiased

2. Show that Var(µ̂0) = �2
⇣
1
n + (x0�x̄)2Pn

i=1(xi�x̄)2

⌘

3. Assume the average yearly precipitation in a year, x̄ , is 3200
mm/yr. Predict runo↵ for an average year.

4. Give a 95% confidence interval for the average runo↵ in a year
with average precipitation.



Confidence intervals for the trend line

Recall:

E [µ̂0] = ↵+ �x0 = µ0

Var(µ̂0) = �2

✓
1

n
+

(x0 � x̄)2Pn
i=1(xi � x̄)2

◆
,

and:
µ̂0 � µ0r

S2
⇣
1
n + (x0�x̄)2Pn

i=1(xi�x̄)2

⌘ ⇠ tn�2,

so:

µ̂0 � t↵/2,n�2

p
S2 · C < µ0 < µ̂0 + t↵/2,n�2

p
S2 · C .



Confidence intervals for the trend line

0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

95% confidence interval

x

y

True
Estimated

The confidence interval (CI) margin of error (MOE) is then:

t↵/2,n�2

p
S2 · C = t↵/2,n�2

s

S2

✓
1

n
+

(x0 � x̄)2Pn
i=1(xi � x̄)2

◆

= t↵/2,n�2S

s
1

n
+

(x0 � x̄)2Pn
i=1(xi � x̄)2

.



Confidence intervals for the trend line

0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

95% confidence interval

x

y

True
Estimated

The confidence interval (CI) margin of error (MOE) is then:

t↵/2,n�2

p
S2 · C = t↵/2,n�2

s

S2

✓
1

n
+

(x0 � x̄)2Pn
i=1(xi � x̄)2

◆

= t↵/2,n�2S

s
1

n
+
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Constructing approximate confidence intervals

What if the ✏i are non-Gaussian?
If "1, . . . , "n iid, E ["i ] = 0, and Var("i ) = �2, then for large
enough n:

I �̂0 and �̂1 are still approximately Gaussian,
I µ̂0 is still approximately Gaussian,
I S

2 still converges to Var(") in some sense,
I approximate (1� ↵)⇥ 100% confidence intervals can still be

created via:

✓̂ � Z↵/2

p
S2 · C < ✓0 < ✓̂ + Z↵/2

p
S2 · C

only using Z↵/2 instead of t↵/2,n�2, and
I approximate hypothesis tests can be conducted via the pivot:

✓̂ � ✓0p
S2 · C

.⇠ Z (‘
.⇠’ meaning ‘approximately distributed as’)
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Hot chocolate sales (based on problem 4, Fall 2015)

Last winter, on Sundays, Alexander sold cups of hot chocolate by
the ski tracks near his house. This winter he plans to have a
similar business. Alexander experienced that the sales changed
dramatically with the weather and skiing conditions. He made a
condition index, x , where x = 1 means “bad conditions”, x = 2
means “good conditions”, x = 3 means “very good conditions”
and x = 4 means “excellent conditions”.



Hot chocolate sales (based on problem 4, Fall 2015)

For 20 Sundays, i = 1, . . . , 20, he registered both the number of
cups sold, denoted yi , and the associated condition index, xi . We
will phrase the sales as a regression model taking condition as an
explanatory variable:

Yi = �0 + �1xi + ✏i , i = 1, . . . , 20,

where ✏1, . . . , ✏20 are independent variables with expected value 0
and variance �2, and �0 and �1 are fixed but unknown regression
parameters.



Hot chocolate sales (based on problem 4, Fall 2015)

P20
i=1(xi � x̄)2 = 24.95

1
18

P20
i=1(yi � �̂0 � �̂1)2 = 5.652

�̂1 ⇡ 9.51.

Questions:

1. Would it be reasonable to construct a
95% confidence interval for �0 or �1?

2. Alexander thinks he can improve skiing
conditions by 1 unit by grooming the
snow, but for it to be worth it he would
need to be 95% confident he would sell
at least 8 more cups of hot chocolate on
average. Use a 95% approximate
confidence test to decide on your
recommendation assuming "1, . . . , "n are
iid with mean 0 and variance �2.
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of �0 and �1, respectively.
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Figure 1: Left: The number of cups sold (y-axis) for di�erent conditions (x-axis).
Right: The number of cups sold (y-axis) for all days (x-axis). The conditions index
is indicated.
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Reminders

I Team based learning on Monday April 15


