
T -distributed Random Fields:

A Parametric Model for Heavy-tailed

Random Fields

Jo Røislien2, Henning Omre3

2Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and

Technology, Norway; e-mail: jo.roislien@rikshospitalet.no
3Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway; e-mail:

omre@math.ntnu.no

1



ABSTRACT

Histograms of observations from spatial phenomena are often found to be more heavy-
tailed than Gaussian distributions, which makes the Gaussian random field model unsuited.
A T -distributed random field model with heavy-tailed marginal probability density func-
tions is defined. The model is a generalization of the familiar Student-T distribution, and it
may be given a Bayesian interpretation. The increased variability appears cross-realizations,
contrary to in-realizations, since all realizations are Gaussian-like with varying variance be-
tween realizations. The T -distributed random field model is analytically tractable and the
conditional model is developed, which provides algorithms for conditional simulation and pre-
diction, so-called T -kriging. The model compares favourably with most previously defined
random field models. The Gaussian random field model appears as a special, limiting case of
the T -distributed random field model. The model is particularly useful whenever multiple,
sparsely sampled realizations of the random field are available, and is clearly favourable to
the Gaussian model in this case. The properties of the T -distributed random field model is
demonstrated on well log observations from the Gullfaks field in the North Sea. The predic-
tions correspond to traditional kriging predictions, while the associated prediction variances
are more representative, as they are layer specific and include uncertainty caused by using
variance estimates.

KEY WORDS: random fields, hierarchical models, sampling, kriging, parameter estima-
tion.



INTRODUCTION

Histograms of observations from spatial phenomena, for example from well log data, often
appear more heavy-tailed than the Gaussian distribution. This feature requires more general
models than the ones usually defined in traditional geostatistics. The disadvantage is that
these models are often complicated to handle mathematically.

In recent years, a series of papers have been presented on parametric stochastic models
for continuous random fields (RF) with non-Gaussian marginal probability density functions
(pdf). Gaussian RF (GRF) models are of course most widely used in practice (Chilès and
Delfiner, 1999). The normal-score approach makes a univariate φ-transform of the random
variables (RV) into a Gaussian marginal pdf, for then to assume a GRF model. The normal-
score model, φ−1-GRF model, is widely used as a model for RFs with non-Gaussian marginal
pdfs (Chilès and Delfiner, 1999). The advantage of the φ−1-GRF model is its simplicity and
flexibility, but its disadvantage is the lack of analytical tractability. In the current paper
RFs with symmetric, unimodal marginal pdfs, heavy-tailed or not, are considered. In a
recent paper (Gunning, 2002) the use of Lévy-Stable RFs (LSRF) as models for such RFs
is discussed. Gunning presents an interesting discussion on desirable features of stochastic
models for continuous RFs, and the LSRF is evaluated with respect to these features. The
current paper can be seen as an extension of Gunnings work. We elaborate on his list of
features, but suggest another class of RF models. Our list of desirable features of parametric
stochastic models for continuous RFs is as follows:

• Fully specified probabilistic model
This is a requirement for simulation of the RF. RF models based on contrasts and
increments often leave parameters in the trend unspecified, and hence they are unsuited
for simulation.

• Permutation invariance
The RF model must be exchangeable in its components. This is a requirement for RF
models (Yaglom, 1962).

• Probabilistic consistency
Finite dimensional marginal pdfs of different dimensions defined by the RF model must
be such that they coincide when non-common dimensions are integrated out. This is
another requirement for RF models (Yaglom, 1962).

• Marginal invariance
Finite dimensional marginal pdfs defined by the RF model should all belong to the
same parametric class of pdfs. This makes it easier to ensure probilistic consistency,
and simplifies analytical work.

• Closed under additivity
Often, observations are collected as averages over sampling volumes, so-called sample
support. The objective is frequently to determine spatial averages over a given volume.
If spatial averages define an integrated RF which belongs to the same parametric class
as the initial RF, this will normally simplify the analytical work.

• Analytical tractability
The objective is usually to determine the conditional RF model conditioned on a set
of observations in arbitrary locations. In order to define this conditional RF model,
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the non-observed dimensions of the RF model must be integrated out. This is very
difficult unless the RF model is analytically tractable. Numerical integration in such
high dimensions is virtually impossible. Analytical tractability will also make it easier
to define efficient simulation algorithms for the RF.

• General model
It is of course desirable that the parametric RF model is general in the sense that the
admissible range of parameter values define a large variety of RF models. It would of
course be convenient if marginal pdfs of all kinds could be modelled. Moreover, it would
be fine if certain parameter combinations provide familiar RF models, the GRF model
in particular.

• Model parameter inference
The parametric RF model is by definition fully specified by a set of parameters. It is
of course desirable that the number of parameters is low, and that the parameters are
interpretable. Most important, however, is that reliable estimators can be defined based
on a set of observations from the RF.

• Diminishing spatial dependence
Random variables in two locations should approach independence as their interdistance
increases. This property is related to the ergodic characteristics of the RF, and will make
estimators for model parameters more reliable. Without diminishing spatial dependence
one may not be able to define consistent estimators for the model parameters based on
observations from one single realization of the RF.

GRF models are by far the most used in practice, and the GRF is normally defined as follows:

Definition 1 Gaussian Random Field (GRF)
A RF {Z(x);x ∈ D ⊂ R

n} is termed a GRF if

Z = [Z(x1), . . . , Z(xm)]T ∼ Nm(µ,Φ)

with pdf

f(z) =
1

(2π)m/2
|Φ|−

1

2 exp

{

−
1

2
(z − µ)T Φ−1(z − µ)

}

for all configurations (x1, . . . , xm) ∈ D × . . . ×D and all m ∈ N+ where Nm(µ,Φ) represents
the multivariate Gaussian distribution with parameters (µ,Φ) of proper dimensions. The GRF
is parameterized Gx(µx, φxx) where

µx : {µ(x);x ∈ D}

φxx : {φ(x′, x′′); (x′, x′′) ∈ D ×D}

with µx the expectation function over D, and φxx a positive definite covariance function over
D ×D.

The GRF model meets most of the desirable features listed above. Being a general model is
the only feature really being violated. The GRF model constitutes an extreme case among RF
models in the sense that it maximizes entropy, i.e., it is the smoothest model possible given the
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model parameters. This is also related to the central limit theorem – everything averages out
to the GRF. The GRF model exhibits two unfavourable features in particular: The Gaussian
marginal pdf has extremely light tails, and the prediction variance is only dependent on the
location configuration of the observations – not on the values actually observed.

The objective of the current paper is to define a RF model with symmetric, unimodal
marginal pdfs with large flexibility in tail behaviour. The T -distributed RF (TRF) model
is introduced and its properties explored. The TRF model can also be given a Bayesian
interpretation as an extension of the work in Kitanidis (1986), Omre (1987) and Hjort and
Omre (1994).

The paper is organized as follows; the next section contains a motivation for the study,
before the TRF model is defined and its properties discussed. Then T -kriging is introduced,
and estimators for the model parameters of the TRF are defined. A case study on the real
data explored in the introduction is included, and the two last sections contain a discussion
of the characteristics of the TRF model and some concluding remarks.

MOTIVATION

Consider the density log from a well in the Gullfaks field in the North Sea (Fig. 1, left
display). The well seems to penetrate several horisontal sedimentary layers with varying
properties, and a segmentation into layers is made (Fig. 1, right display). The layered
structure is assumed to be caused by abrupt changes in the depositional processes. The
list of layer averages and empirical variances of the nine layers is presented in Table 1. If
a classification of the layers based on the average values is made, layer 1, 2, 3, 5, 7 and 9
will be pooled in one class. One could of course have used empirical variances for further
classification, but we have chosen not to do so here, because empirical variances are often
very sensitive to individual samples. Histograms of the six pooled layers look fairly dense
with light tails (Fig. 2). However, the pooled histogram from the six layers (Fig. 3, left
display), appears as peaked with relatively heavy tails. In the right display of Figure 3, a
kernel-smoothed pooled histogram is presented together with maximum likelihood adapted
Gaussian and Student-T pdfs. Note that the Student-T pdf reproduces the histogram much
more reliably than the Gaussian.

To summarize, by compiling relatively dense, light-tailed histograms from the individual
layers, one obtains a composite peaked, heavy-tailed histogram. This change in shape appears
since the layer-histograms have different variances. Recall that identical centering is ensured
by the initial classification. Statisticians are aware that the composite of Gaussian RVs,
identically centered with varying variances, may appear as Student-T distributed (Walpole
and Myers, 1993). In the current study, the well logs in the individual layers are considered
to be GRFs, equally centered but with different variances, which appear as outcomes from a
unifying TRF.

The evaluation above is made in a well with numerous observations in each layer. If only a
few observations in each layer are available, for example as core plug samples, one may wish to
interpolate or simulate along the entire well trace and extend this into the three-dimensional
reservoir. The layers may be classified with respect to averages, while further classification
based on empirical variances may be considered unreliable. The composite histogram may
appear Student-T like, hence a RF model with a Student-T marginal pdf would be preferred.
Based on this RF model, interpolation and simulation in the individual layers conditional on
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the few available obervations in that particular layer can be made. This setting constitutes
the challenge of the study.

T-DISTRIBUTED RANDOM FIELDS

In order to define a suitable RF model for the data presented in the previous section,
a survey of multivariate T -distributed RVs is presented in the following subsection. In the
subsequent subsections, TRFs, simple and conditional, are defined.

Multivariate T -distributed Random Variables

The multivariate T -distributed RV is a generalization of the Student-T distributed RV
introduced in most introductory courses in statistics. The exposure here is mainly based on
results in Cornish (1954), Johnson and Kotz (1972) and Welsh (1996).
Definition 2 T -distributed random variable
A RV Z ∈ R

m is multivariate T -distributed

Z ∼ Tm(µ,Ω, ν)

if its pdf is

f(z) =
Γ(ν+m

2
)

Γ(ν
2
)(νπ)m/2

|Ω|−
1

2

[

1 +
1

ν
(z − µ)T Ω−1(z − µ)

]− ν+m
2

where Γ(x) is the gamma function, and with µ ∈ R
m a centering vector, Ω ∈ R

m × R
m a

positive definite scale/dependence matrix, and ν ∈ R+ the degrees of freedom.

This definition specifies a spherical-symmetric pdf centered at µ with Ω controlling scale and
multivariate dependence, while ν controls the tail behaviour (Mardia, Kent and Bibby, 1979).
In Figures 4 and 5 T2(0,Ω, ν) variables are displayed for varying values of Ω and ν. Note that
all bivariate pdfs have spherical contour lines, but the general shape appears with varying
peakedness and heavy-tailedness.

The properties of the multivariate T -distributed RV are summarized below:

Result 1 Properties of multivariate T -distributed random variables
Let Z ∈ R

m have pdf as in Definition 2. Then the following properties can be demonstrated:

1. Special cases:

Tm(µ,Ω, ν)
ν→∞
−→ Nm(µ,Ω)

Tm(µ,Ω, 1) = Cm(µ,Ω)

where Nm(µ,Ω) and Cm(µ,Ω) are the multivariate Gaussian and Cauchy distributions,
respectively.

2. Moments:

E{Z} = µ ; ν ≥ 2
Cov{Z} = ν

ν−2
Ω ; ν ≥ 3

while for ν less than the specified values the moments are infinite.
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3. Linear transform:
Let A be an arbitrary known (k × m)-matrix, and

ZA = AZ.

Then

ZA ∼ Tk(Aµ,AΩAT , ν).

Note that this entails that all marginal pdfs of Z are T -distributed as well, since ZA is
a marginal of Z for certain choices of binary A.

4. Conditional distributions:
Let ZA be defined as in Point 3. Then

[Z|ZA = zA] ∼ Tm

(

µ·|zA
,Ω·|zA

, ν + k
)

where

µ·|zA
= µ + ΩAT (AΩAT )−1(zA − Aµ)

Ω·|zA
= ξ(zA)

[

Ω − ΩAT (AΩAT )−1AΩ
]

with

ξ(zA) =
1

1 + k
ν

[

1 +
1

ν
(zA − Aµ)T (AΩAT )−1(zA − Aµ)

]

.

Note that this entails that all pdfs conditional on arbitrary linear combinations are T -
distributed.

5. Non-independence:
Let Z be arbitrarily decomposed as follows:

Z =

[

Z1

Z2

]

, µ =

[

µ1

µ2

]

, Ω =

[

Ω11 Ω12

Ω21 Ω22

]

with Z1 ∈ R
m1 and Z2 ∈ R

m2 and m = m1 + m2. Then

Tm(µ,Ω, ν) 6= Tm1
(µ1,Ω11, ν) × Tm2

(µ2,Ω22, ν) ; ν < ∞

even for the particular case Ω12 and Ω21 being matrices containing only zeros. This
entails that for ν < ∞, Z1 and Z2 will not be independent even if Ω is a block matrix.
In the limit ν → ∞ independence will be obtained, as the multivariate Gaussian case is
reached.

6. Decomposition:
Let H and U be independent RVs. Then

Z = µ + H− 1

2 Ω
1

2 U

with

νH ∼ χ2(ν)

U ∼ Nm(0, Im)

where χ2(ν) is a univariate chi-squared distribution with ν degrees of freedom, and Im

is a (m × m) unit-diagonal matrix.
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7. Hierarchical representation:
Let Z conditional on the random parameters (β, φ2) be distributed as

[Z|β, φ2] ∼ Nm(Gβ, φ2ΦZ
0 )

where G is an arbitrary known (m × k) matrix, β is a random (k × 1) vector, φ2 is a
univariate RV and ΦZ

0 is a known positive definite (m × m) correlation matrix, with

[β|φ2] ∼ Nk

(

µβ, φ2Φβ
0

)

φ2 ∼ IG

(

ν

2
,
νω2

2

)

where µβ and Φβ
0

is the expectation vector and correlation matrix of appropriate dimen-
sions, and IG(κ, λ) represents the inverse gamma pdf

f(φ2) =
1

Γ(κ)
λκ

(

1

φ2

)κ+1

e
− λ

φ2 ; κ, λ > 0, φ2 > 0.

Then

Z ∼ Tm(µ,Ω, ν)

where

µ = GT µβ

Ω = ω2Ω0 = ω2[ΦZ
0 + GT Φβ

0
G].

Note that this representation can be interpreted in a Bayesian setting with (β, φ2) being
random hyperparameters.

T -distributed Random Fields

The TRF is defined by the multivariate T -distributed RV along the lines of the GRF in
Definition 1.
Definition 3 T -distributed Random Field (TRF)
A RF {Z(x);x ∈ D ⊂ R

n} is termed a TRF if

Z = [Z(x1), . . . , Z(xm)]T ∼ Tm(µ,Ω, ν)

for all configurations (x1, . . . , xm) ∈ D × · · · × D and all m ∈ N+ where Tm(µ,Ω, ν) repre-
sents the multivariate T -distribution with parameters (µ,Ω, ν). The TRF is parameterized
Tx(µx, ωxx, ν) where

µx : {µ(x);x ∈ D}

wxx ; {ω(x′, x′′); (x′, x′′) ∈ D ×D}

with µx the centering function over D and ωxx a positive definite scale/dependence function
over D ×D, and ν the degrees of freedom.
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Note that from the definition of TRFs and Result 1.1 it is obvious that a TRF tends towards
a GRF whenever ν → ∞. T -distributed RVs are in Result 1.3 shown to be closed under linear
transformations. This entails that a differential TRF, if it exists, also will be a TRF. The
same holds for an integrated TRF.

In Figures 6 through 9 realizations of Tx(0, ωxx, ν) with varying ν are displayed. The
scale/dependence function ωxx has form

ω(x′, x′′) = exp
{

−α(x′′ − x′)2
}

with α = 1

50
, and ν takes values 1, 3, 7, and ∞. Note that the variability between realizations.

seems to decline as ν increases and the TRF approaches a GRF. The effect of Result 1.7 can
be observed by the fact that each realization is Gaussian-like, with large cross-realization
variability.

The hierarchical representation of T -distributed RVs in Result 1.7 can be used to define:

Result 2 Hierarchical representation of TRFs
Let {Z(x);x ∈ D} conditional on the random parameters (β, φ2) be:

{[Z(x)|β, φ2];x ∈ D} ∼ Gx(gT
x β, φ2φZ

0xx)

where

gx : {g(x) =
(

g1(x), . . . , gk(x)
)T

;x ∈ D}

φZ
0xx : {φZ

0 (x′, x′′);x′, x′′ ∈ D ×D}

with gx and φZ
0xx a known trend function and a spatial correlation function respectively, and

β a random (k × 1) vector and φ2 a univariate random variance. Further, let

[β|φ2] ∼ Nk

(

µβ, φ2Φβ
0

)

φ2 ∼ IG

(

ν

2
,
νω2

2

)

where µβ and Φβ
0

are expectations and correlation matrix of appropriate dimensions. Then

{Z(x);x ∈ D} ∼ Tx(µx, ωxx, ν)

with

µx : {µ(x) = g(x)T µβ;x ∈ D}

ωxx : {ω(x′, x′′) = ω2ω0(x
′, x′′)

= ω2[φZ
0 (x′, x′′) + g(x′)T Φβ

0
g(x′′)];x′, x′′ ∈ D ×D}.

This hierarchical representation of a TRF can be given a Bayesian interpretation where the
model parameters (β, φ2) in a GRF is assigned appropriate prior models. Note that this
corresponds to the Bayesian kriging models discussed in Kitanidis (1986), Omre (1987), Le
and Zidek (1991), Handcock and Stein (1993) and Hjort and Omre (1994).

The hierarchical representation in Result 2 can be used for simulation of TRFs, and a
suitable algorithm is as follows:
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Algorithm 1 Simulation of TRFs

Simulate a TRF {Z(x);∈ D} ∼ Tx

(

gT
x µβ, ω2[φZ

0xx + gT
x Φβ

0
gx], ν

)

by:

• generate φ2 from IG(ν
2
, νω2

2
)

• given φ2, generate β from Nk(µβ, φ2Φβ
0
)

• given (β, φ2), generate

{Z(x);x ∈ D} ∼ Gx(gT
x β, φ2φZ

0xx).

This algorithm can of course be very efficient since β and φ2 are low-dimensional, and any
fast algorithm for simulation of GRFs can be used.

Conditional T -distributed Random Fields

Consider a TRF {Z(x);x ∈ D} and let Zd = [Z(x1), . . . , Z(xn)]T be a set of observations
in arbitrary locations (x1, . . . , xn) ∈ D× . . .×D with associated realization zd = (z1, . . . zn)T .
The conditional TRF is denoted {[Z(x)|zd];x ∈ D}. From Result 1.4 the conditional TRF is
given as
Result 3 Conditional TRF
A TRF {Z(x);x ∈ D} ∼ Tx(µx, ωxx, ν) conditional on the (n × 1)-dimensional vector of
observations Zd = zd is:

{[Z(x)|zd];x ∈ D} ∼ Tx

(

µx|zd, ωxx|zd, ν + n
)

where

µx|zd :
{

[µ(x)|zd] = µ(x) + ωT
xdΩ

−1

dd (zd − µd);x ∈ D
}

ωxx|zd :
{

[ω(x′, x′′)|zd] = ξ(zd)
[

ω(x′, x′′) − ωT
x′dΩ

−1

dd ωx′′d

]

; (x′, x′′) ∈ D ×D
}

with

µd = (µ(x1), . . . , µ(xn))T

ωxd = (ω(x, x1), . . . , ω(x, xn))T

Ωdd =







ω(x1, x1) · · · ω(x1, xn)
...

. . .
...

ω(xn, x1) · · · ω(xn, xn)







ξ(zd) =
1

1 + n
ν

[

1 +
1

ν
(zd − µd)

T Ω−1

dd (zd − µd)

]

Note that this entails that all conditional TRFs are TRFs themselves. The conditional TRF
also has a hierarchical representation that follows from Result 2:
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Result 4 Hierarchical representation of conditional TRFs
Let

{

[Z(x)|zd];x ∈ D
}

conditional on the random parameters (β, φ2) be:
{

[Z(x)|zd, β, φ2];x ∈ D
}

∼ Gx

(

µx|zd,β , φ2φZ
0xx|zd,β

)

where µx|zd,β , φ2 and φZ
0xx|zd,β

are the conditional expectation function, the variance and the

conditional correlation function of a Gx(gT
x β, φ2φZ

0xx). Otherwise the notation is as in Result
2. Further, let

[β|zd, φ2] ∼ Nk

(

µβ|zd , φ2Φβ
0|zd

)

[φ2|zd] ∼ IG
(

η1|zd , η2|zd

)

where µβ|zd and Φβ
0|zd are the conditional expectation and correlation matrix of a Nk

(

µβ, φ2Φβ
0

)

,

while η1|zd and η2|zd are the conditional parameters of a IG(η1, η2) with η1 = ν
2

and η2 = νω2

2
.

Then
{

[Z(x)|zd];x ∈ D
}

∼ Tx

(

µx|zd, ωxx|zd, ν + n
)

with

µx|zd :
{

[µ(x)|zd] = g(x)T µβ + ωT
xdΩ

−1

dd [zd − GT
d µβ];x ∈ D

}

ωxx|zd :
{

[ω(x′, x′′)|zd]

= ξ(zd)
[

ω(x′, x′′) − ωT
x′dΩ

−1

dd ωx′′d

]

; (x′, x′′) ∈ D ×D
}

where

Gd =
(

g(x1), . . . , g(xn)
)

ωxx :
{

ω(x′, x′′) = ω2
[

φZ
0 (x′, x′′) + g(x′)T Φβ

0
g(x′′)

]

; (x′, x′′) ∈ D ×D
}

ξ(zd) =
1

1 + n
ν

[

1 +
1

ν
(zd − GT

d µβ)T Ω−1

dd (zd − GT
d µβ)

]

otherwise the notation is as in Result 2 and 3. The exact expressions are given in the Appen-
dix.

This hierarchical representation can of course be seen as the posterior model in a Bayesian
setting. Moreover, this representation provides a suitable simulation algorithm for conditional
TRFs:

Algorithm 2 Simulation of conditional TRFs
Simulate a conditional TRF {[Z(x)|zd];x ∈ D} ∼ Tx(µx|zd, ωxx|zd, ν + n) with notation as in
Result 4 by:

• given zd, generate φ2 from IG
(

ξ1|zd, ξ2|zd

)

• given zd and φ2, generate β from Nk

(

µβ|zd, φ2Φβ
0|zd

)

• given zd and (φ2, β), generate {Z(x);x ∈ D} ∼ Gx

(

µx|zd,β, φ2φz
0xx|zd,β

)

This algorithm can of course be very efficient, since β and φ2 are low-dimensional, and any
fast algorithm for simulation of conditional GRFs can be used.
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PREDICTION IN T-DISTRIBUTED RANDOM FIELDS

A predictor for Z(x+) in an arbitrary location x+ ∈ D based on the observations in
Zd = [Z(x1), . . . , Z(xn)]T with (x1, . . . , xn) ∈ D× . . .D having realizations zd = (z1, . . . , zn)T ,
can be obtained from the definition of TRFs in Definition 3 and Result 1.4. It is reasonable
to term this predictor the T -kriging predictor.
Definition 4 T -kriging predictor
A RV Z(x+) from a TRF {Z(x);x ∈ D} ∼ Tx(µx, ωxx, ν) can be predicted from the (n × 1)-
dimensional vector of observations Zd = zd by:

[Z(x+)|zd] ∼ T1

(

[µ(x+)|zd], [ω(x+)|zd], ν + n
)

where
[

µ(x+)|zd
]

= µ(x+) + ωT
x+dΩ

−1

dd (zd − µd)
[

ω(x+)|zd
]

=
[

ω(x+, x+)|zd
]

= ξ(zd)
[

ω(x+, x+) − ωT
x+dΩ

−1

dd ωx+d

]

with notation as in Result 3. From Result 1.2 one has

E{Z(x+)|zd} =
[

µ(x+)|zd
]

; ν + n ≥ 2

Var{Z(x+)|zd} =
ν + n

ν + n − 2

[

ω(x+)|zd
]

; ν + n ≥ 3

Note that the conditional expectation predictor, which is optimal under squared error loss,
when it exists, is linear in zd, and coincides with the traditional kriging predictor. The
prediction variance, however, is also dependent on zd. This is contrary to traditional kriging
where the prediction variance is dependent on the location configuration (x1, . . . , xn) only.

Note further that when the number of conditioning observations increases, i.e., n → ∞,
the T -kriging predictor tends towards the traditional kriging predictor, since the degrees
of freedom in the predictor pdf tends towards infinity, which entails Gaussianity. Broadly
spoken, the T -kriging predictor accounts for the fact that the variance of the RF is unknown
and must be estimated. In traditional kriging the estimation uncertainty of the variance
is ignored. These considerations have a parallel in the use of Student-T distributions in
traditional statistical inference.

PARAMETER ESTIMATION IN T-DISTRIBUTED

RANDOM FIELDS

In this section a TRF {Z(x);x ∈ D} ∼ Tx

(

gT
x µβ, ω2[φZ

0xx + gT
x Φβ

0
gx], ν

)

with notation

as in Result 2 will be considered. Focus is on estimation of the model parameters. Assume
that several independent outcomes of this TRF exist: {Zi(x);x ∈ D}; i = 1, . . . ,m. In
each of these outcomes a number of observations are made Zd

i = [Zi(xi1), . . . , Zi(xini
)]T ;

i = 1, . . . ,m with realizations zd
i = (zi1, . . . , zini

)T . The objective is to estimate the model
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parameters (µβ, ω2, φZ
0xx,Φβ

0
, ν) from these observations. The spatial correlation function

φZ
0xx is particularly difficult to determine, and it is assumed known in the exposition below.

Procedures for estimating φZ
0xx may be developed based on estimation of spatial correlation

functions in GRF models (Chilès and Delfiner, 1999).
It is of course possible to specify the full likelihood function based on the definition of the

TRF and perform maximum likelihood estimation. It turns out that the parameter ν, which
defines the tail behaviour of the marginal pdf of the TRF, is particularly hard to determine
by this approach. This is unfortunate, since this tail behaviour is of primary interest in
the study. An alternative estimation procedure, termed hierarchical maximum likelihood, is
recommended here, since it appears to provide more stable estimates of ν in particular.

The hierarchical maximum likelihood estimator is based on the hierarchical representation
of TRFs in Result 2. It draws on the property that given (β, φ2) the individual outcomes of the
TRF will be GRFs. Hence, based on the m outcomes, (βi, φ

2
i ); i = 1, . . . ,m can be estimated

by maximum likelihood estimators. The parameters of interest, (µβ, ω2,Φβ
0
, ν), can thereafter

be estimated by maximum likelihood estimators based on (βi|φ
2
i ) and φ2

i ; i = 1, . . . ,m and
their pdfs as specified in Result 2.

The likelihood function for (βi, φ
2
i ); i = 1, . . . ,m is

L(β1, . . . , βm, φ2
1, . . . , φ

2
m) =

m
∏

i=1

1

(2πφ2
i )

ni
2

∣

∣ΦZ
0didi

∣

∣

− 1

2 exp

{

−
1

2φ2
i

Md
i

}

with

Md
i = (zd

i − GT
di

βi)
T (ΦZ

0didi
)−1(zd

i − GT
di

βi)

where Gdi
=
(

g(xi1), . . . , g(xini
)
)

is a known (k×ni) matrix and ΦZ
0didi

is a (ni×ni)-correlation

matrix defined by φZ
0xx. The corresponding maximum likelihood estimates are

β̂i = [Gdi
(ΦZ

0didi
)−1GT

di
]−1Gdi

(ΦZ
0didi

)−1zd
i ; i = 1, . . . ,m

φ̂2
i =

1

ni
M̂d

i ; i = 1, . . . ,m

with M̂d
i being Md

i where β̂i is substituted for βi. The likelihood function for (µβ ,Φβ
0
) is

L(µβ,Φβ
0
) =

m
∏

i=1

1

(2πφ̂2
i )

ni
2

|Φβ
0
|−

1

2

· exp

{

−
1

2φ̂2
(β̂i − µβ)T (Φβ

0
)−1(β̂i − µβ)

}

.

By maximizing this likelihood function, one obtains the following estimators:

µ̂β =
1

∑m
i=1

1

φ̂2
i

·
m
∑

i=1

β̂i

φ̂2
i

Φ̂β
0

=
1

m

m
∑

i=1

1

φ̂2
i

(β̂i − µ̂β)(β̂i − µ̂β)T .
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Finally, the likelihood function for (ω2, ν) is

L(ω2, ν) =

m
∏

i=1

1

Γ(ν
2
)

(

νω2

2

)

ν
2

(

1

φ̂2
i

)
ν+2

2

exp

{

−
νω2

2φ̂2
i

}

,

and maximizing provides the following expressions, defining the maximum likelihood estima-
tors;

ω̂2 =

[

1

m

m
∑

i=1

1

φ̂2
i

]−1

Γ′(ν
2
)

Γ(ν
2
)
− ln

ν

2
= ln

[

m
∏

i=1

1

φ̂2
i

]1/m

+ ln ω̂2

where Γ(x) and Γ′(x) is the gamma function and its derivate, respectively. The last equation
must be solved numerically in order to define an estimate for ν.

Properties of maximum likelihood estimators in RFs in general are discussed in Stein
(1999). For this particular hierarchical maximum likelihood approach one has; β̂i and φ̂2

i are

consistent estimators in the sense that ni → ∞ by expanding D → R
n, then µ̂β, Φ̂β

0
, ω̂2 and

ν̂ are consistent estimators in the sense that m → ∞. Note in particular that both ni → ∞,
by expanding D, and m → ∞ are required to ensure consistent estimators for the model
parameters of interest.

An interesting case appears if φ̂2
i ; i = 1, . . . ,m all turn out identical to, for example, φ̂2.

Then it is easy to show that ω̂2 = φ̂2 and ν̂ = ∞. This entails that the inferred TRF coincides
with a GRF. Hence the degrees of freedom, ν, is related to the dispersion in φ̂2

i ; i = 1, . . . ,m.
Another interesting case appears when only one realization is available, i.e., m = 1. Hence

zd
1 = (z11, . . . , z1n1

)T is the only available data vector. With n1 ≥ 2 estimates of β1 and φ2
1

can be obtained, and the estimators are consistent in the sense specified above. The estimate
of µβ is obtainable while Φβ

0
is left unspecified. Assume for the moment that β is a constant

vector µβ which makes Φβ
0

irrelevant. The interesting feature is that ω2 and ν are estimated

to φ̂2
1 and ∞. This entails that the inferred TRF collapses into a GRF, since they coincide for

ν = ∞. Consequently, one cannot make inference about TRFs with observations from only
one realization of the RF. This is related to the fact that the TRF model does not exhibit
diminishing spatial dependence, and the heavy-tailedness only appears cross-realizations and
not in-realizations. Recall that all realizations appear GRF-like with parameter values varying
between realizations.

CASE STUDY

Consider the density log from the well in the Gullfaks field (Fig. 1, left display) . Assume
that the log has only been sampled every third meter, while the layer geometry has been
determined from elsewhere (Fig. 10). The layers are classified with respect to the average
value in each layer, which results in layer 1, 2, 3, 5, 7 and 9 being pooled, as in the ”Motivation”
section. The variance estimates, however, are highly unreliable when based on so few samples
in each layer, and are therefore not used for classification. The composite histogram of all
samples in the pooled layers is displayed in the left display in Figure 11.
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Two alternative modelling approaches can be seen. In the traditional GRF modelling
approach, the layers are considered to be realizations from one common GRF model. The
variances in all layers are considered to be identical, and the differences in empirical variances
are tributed to the sampling variance. The compiled set of observations can of course be
used for inference about the parameters of the GRF model. Alternatively, a TRF modelling
approach can be used, where the layeres are considered to be realizations from a unifying
TRF model. This approach gives room for different variances in the individual layers. Also
in this case, the compiled set of observations can be used for model parameter inference.
Consequently, the difference in the two approaches is the interpretation of the varying empir-
ical variances in the layers. Note further that the TRF model contains the GRF model as a
limiting case, and hence the former can be seen as a generalization of the latter.

In this case study both the GRF and the TRF approach will be used, and the results
based on each of them compared. The two models are Gx(µ, φ2φ0xx) and Tx(µ, ω2ω0xx, ν)
respectively, with µ a constant level. The spatial correlation function φ0xx and the spatial
dependence function ω0xx will, with constant µ, have similar interpretation, see Result 2, and
they are assumed known to be

φ0xx = ω0xx = %(x′, x′′) = exp
{

−α(x′′ − x′)
}

with α = 1/0.65, which is in good agreement with the data. The maximum likelihood
estimators based on the GRF model provides µ̂ = 2018 and φ̂2 = 6047. Alternatively, the
TRF model provides hierarchical maximum likelihood estimates µ̂ = 2018, ω̂2 = 1383 and
ν̂ = 1.71. The kernel smoothed histograms of the compiled observations and the inferred
marginal pdfs from the two models are presented in the right display of Figure 11. The TRF
model seems to reproduce the observations better than the GRF model.

Layers 2 and 3 are studied in more detail under the two competing models, since they
constitute the extremes with respect to variability. Each of the layers are considered as
independent realizations of the respective models, and they are evaluated under the two
models inferred above. In Figure 12 conditional realizations in the two layers under the
inferred GRF and TRF model respectively, are presented. Under the GRF model the inferred
variance is considered to be the true one, and hence not adapted to the observations in the
layer under study. In layer 2 this entails that the variablity in the conditioning observations
completely dominates the variability of the model. The opposite effect is observed in layer
3, since the variability in the observations is less. Under the TRF model simulation is made
according to Algorithm 2. The variability of the model is adaptive to the value of the available
observations and the realizations look much more trustworthy. To summarize, the adaptivity
of the variance in the conditional TRF model makes the realizations more realistic than under
the GRF model with non-adaptive variance.

In Figure 10 two non-observed locations are marked, one in each layer. In Figure 13, the
predictive conditional pdfs in these two locations under the inferred GRF and TRF model
respectively, are displayed. Under the GRF model the simple kriging predictor with inferred
model parameters is used. The conditional pdf is Gaussian with expectation dependent on
the value of the observations and variance dependent on the location of the observations only.
Hence the prediciton variances in the two layers appear very similar. Under the TRF model
the prediction is made according to the results in the section on prediction. The conditional
pdf is T -distributed with expectations coinciding with the expectations under the GRF model.
The prediction variances, however, are adaptive to the actual values of the observations in
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the layer under study. Hence the prediction variance in layer 2 is much larger than in layer 3.
Moreover, the degrees of freedom in the conditional T -distribution increases with the number
of observations, since the estimation of the variance is accounted for. Hence the conditional
pdf in layer 3 is more Gaussian-like than the one in layer 2. To summarize, the adaptive
prediction variance in the TRF model makes the predictive pdfs more realistic than under
the GRF model, where the variability is averaged over the layers. Moreover, the prediction is
T -distributed under the TRF model, and accounts for the fact that the variance is unknown
and estimated. Under the GRF model, the estimated variance is considered to be the true
one, and the esimation effect is ignored.

One may argue that the empirical variance obtained from the observations in layers 2 and
3 are so different that the layers should not be pooled when making inference of the GRF
and TRF models. It may be so, but in order to evaluate some of the really thin layers, some
pooling must be made in order to infer a RF model. Then the effect demonstrated above will
appear, although not as dramatic as seen here. If each layer is considered individually, and
inference of a GRF model is done, the results will be overly optimistic because the uncertainty
in estimating the variance is not accounted for.

CHARACTERISTICS OF T-DISTRIBUTED RANDOM

FIELDS

The example in the ”Motivation” section demonstrates that a RF with heavy-tailed mar-
ginal pdfs may result from a composite of RFs with light-tailed marginal pdfs with similar
expectations but varying variances. The individual RFs may be GRFs with identical expec-
tations, but varying variances, and this may be modelled by a unifying TRF.

The TRF model has most of the favourable properties for parametric models listed in the
introduction. The model is fully specified; it exhibits permutation invariance and probabilistic
consistency; it has marginal invariance; it is closed under additivity, and it is analytically
tractable. The TRF model is a fairly general RF model, since it can reproduce a large
class of RFs with symmetric, unimodal marginal pdfs, heavy-tailed or not. Moreover, the
GRF model is a limiting case of the TRF model, while the Cauchy RF model appears as
a special case. The generality of the TRF model has clear limitations, however, since RFs
with neither skewed nor multimodal marginal pdfs can be reproduced. Model parameter
inference is somewhat complicated, since consistent estimators can only be defined from sets
of observations from several realizations of the TRF. If observations from only one single
realization are available, the inferred TRF model collapses into a GRF model. The TRF
model does not exhibit diminishing spatial dependence, and this is the reason for lack of
consistency of the estimators based on observations from one realization only.

The TRF model compares favourably with the GRF model. The fact that the GRF is
a special, limiting case of the TRF model emphasizes this. The TRF model can be seen as
a composite of GRF models with identical expectations but varying variances. The heavy
tails of the marginal pdfs of TRF models are caused by cross-realization variability and not
in-realization variability, since all realizations are GRF-like with varying variance parame-
ters from one realization to the other. For GRF models the variance parameter is a fixed
constant. If sets of observations from several realizations are available, assuming the more
general TRF model will increase flexibility. Inference under the TRF and GRF models coin-
cide if observations from only one realization is available. Conditional TRF models will have

16



both expectations and variances which depend on the values of the observations, while condi-
tional GRF models will have only expectations depending on these values; the corresponding
variance is only dependent on the location of these observations. The TRF model accounts
for the fact that the model variance is largely unknown and must be estimated, while the
GRF model considers the estimated variance to be the true value. Consequently, prediction
variances will generally be larger under the TRF model than under the GRF model. To sum-
marize, by consequently using a TRF model one will obtain the corresponding GRF model
when it is appropriate, and otherwise benefit from the additional flexibility of the TRF model.
Larger mathematical complexity constitutes the down-side of this approach. Moreover, by
assuming a GRF model, extensions are sometimes easier to make, for example when adding
measurement error to the observations.

The TRF model compares favourably with φ−1-GRF models for RFs (Chilès and Delfiner,
1999) with symmetric, unimodal marginal pdfs. Note, however, that φ−1-GRFs can be used
for a larger class of RFs, although the reliability of the results is hard to judge. The φ−1-GRF
model is generally not closed under additivity, and it lacks analytical tractability, hence most
results must be obtained through simulation or approximations. Lastly, strong assumptions
about spatial stationarity of the RF are required in order to make inference about the φ-
transformation. Consequently, the TRF model is considered favourable to the φ−1-GRF
model when they both apply.

The TRF model compares favourably with LSRF models as defined in Gunning (2002).
Both models apply for RFs with symmetric, unimodal marginal pdfs. The LSRF models
lack analytical tractability and most results must be obtained through simulation. The fact
that the LSRF model is only defined through its characteristic function, with no closed form
expression for the corresponding pdf, demonstrates this lack of analytical tractability. Both
the TRF and the LSRF models lack diminishing spatial dependence. This seems to have
less consequences for the former than the latter, since the analytical tractability of the TRF
model makes it possible to define efficient simulation algorithms even for conditional TRF
models.

In practice, the most favourable case for TRF models is in evaluation of RFs where
multiple, sparsely sampled realizations are available. Inference of the TRF model is made on
the compiled set of observations, and evaluation is done on each realization individually, based
on the inferred TRF model. In reservoir evalutaion, several similar geological layers may be
penetrated by a well and a limited number of core samples may be collected in each layer.
Note further that the TRF model is defined for a reference space of arbitrary dimensions,
hence extending the model into three dimensions representing the entire geological layer is
simple.

CONCLUSIONS

Histograms of observations from spatial phenomena are often found to be more heavy-
tailed than Gaussian distributions. Well log data in petroleum applications constitute one
example. The heavy-tailedness of well log histograms may be caused by the well penetrating
several layers with similar well log averages, but varying variances. A parametric T -distributed
random field (RF) model able to capture this heavy-tailedness in the marginal pdf is defined.
The model appears as a generalization of the familiar Student-T distribution, and it may be
given a Bayesian interpretation. The large variability appears as cross-realization variability,
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contrary to in-realization variability, since all realizations are Gaussian-like with varying vari-
ances between realizations. This T -distributed RF model exhibits many favourable features:
It is a fully defined, valid random field model; it defines a class of RF models closed for linear
operators; it is analytically tractable; for RFs with symmetric, unimodal marginal pdfs it
is fairly general, and contains the Gaussian RF model as a limiting case; reliable parameter
estimators are defined based on observations from multiple realizations.

An alternative RF model with heavy-tailed marginal pdfs could be imagined. A Gaussian
RF model with the variance being a RF would also exhibit heavy-tailed marginal pdfs. More-
over, if the variance RF is ergodic, the resulting heavy-tailed RF is expected to appear with
diminishing spatial dependence. However, we have so far not been able to define a parametric
RF model of this type which is analytically tractable.

The T -distributed RF model compares favourably with the Gaussian, φ-transformed and
Lévy-Stable RF models. The model appears as a generalization of Gaussian RF models, and
captures heavy-tailed marginal pdfs. It is analytically tractable, which is not the case for
neither the φ-transform nor the Lévy-Stable RF models. Hence, for RFs with symmetric,
unimodal marginal pdfs, the T -distributed RF model provides a recommendable alternative.
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APPENDIX: PARAMETERS IN HIERARCHICAL

CONDITIONAL TRFS

The exact relations defined in Result 4 are defined here:

µx|zd,β :
{

[µ(x)|zd, β] = g(x)T β + (φZ
0xd)

T (ΦZ
0dd)

−1(zd − GT
d β);x ∈ D

}

φZ
0xx|zd,β :

{

[φZ
0 (x′, x′′)|zd, β] = φZ

0 (x′, x′′) − (φZ
0x′d)

T (ΦZ
0dd)

−1φZ
0x′′d;x

′, x′′ ∈ D ×D
}

with

φZ
0xd =

(

φZ
0 (x, x1), . . . , φ

Z
0 (x, xn)

)T

ΦZ
0dd =







φZ
0 (x1, x1) · · · φZ

0 (x1, xn)
...

. . .
...

φZ
0 (xn, x1) · · · φZ

0 (xn, xn)







Gd =
(

g(x1), . . . g(xn)
)

µβ|zd = µβ + Φβ
0
Gd

[

ΦZ
0dd + GT

d Φβ
0
Gd

]−1

(zd − GT µβ)

Φβ
0|zd = Φβ

0
− Φβ

0
Gd

[

ΦZ
0dd + GT

d Φβ
0
Gd

]−1

GT
d Φβ

0

η1|zd = η1 +
n

2

η2|zd = ξ(zd)

[

η2 +
ω2n

2

]
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Table 1: Averages and empirical variances in the layers of Figure 1.

layer average empirical variance

1 1962 351

2 1986 56402

3 2038 744

4 2331 54659

5 2014 147

6 2361 67417

7 1997 448

8 2554 41636

9 2053 5969
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Figure 1: Left: Bulk density log from well C33 of the Gullfaks field in the North sea. Right:
Layer interpretation of the log.
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Figure 2: Histogram of density observations in each of the pooled layers. Upper: Layer 1,2,3.
Lower: Layer 5,7,9.
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Figure 4: Upper: T2(0,Ω, 1)-distribution with unit variance and no correlation. Lower:
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T2(0,Ω, 7)-distribution with unit variance and correlation 0.5.
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Figure 6: Realizations of T -distributed RFs with ν = 1.
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Figure 7: Realizations of T -distributed RFs with ν = 3.
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Figure 8: Realizations of T -distributed RFs with ν = 5.
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Figure 9: Realizations of T -distributed RFs with ν = ∞, i.e. Gaussian RFs.
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Figure 10: Bulk density log observations from well C33 from the Gullfaks field in the North
sea with layer interpretation. The two locations to be predicted are marked (×).
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Figure 11: Left: Histogram of density observations in pooled layers. Right: Kernel estimate
of pdf (—); Gaussian estimate of pdf (· · · ); and Student-T estimate of pdf (−−−).
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Figure 12: Left: Ten conditional realizations from the inferred Gaussian RF model. Right:
Ten conditional realizations from the inferred T-distributed RF model.
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Figure 13: Prediction pdf based on the inferred Gaussian RF model (· · · ) and the inferred
T-distributed RF model (−−−) in layer 2 (left) and layer 3 (right).
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