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1.1 Spatial statistics: Geostatistical approaches

spatial statistics is concerned with the analysis of spatially or

spatio-temporally referenced data and with the study of the

associated probabilistic models and stochastic processes

applications abound, including agriculture, astronomy, climatol-

ogy, economics, energy, environmental science, geographical epi-

demiology, geology, hydrology, medical imaging, meteorology, . . .

spatial statistics can be broadly divided into three complementary

parts, dealing with point patterns, lattice data and geostatis-

tical data, respectively

the state of the art in spatial statistics is summarized in the Hand-

book of Spatial Statistics (Gelfand, Diggle, Fuentes and Guttorp,

eds., 2010) and in Cressie and Wikle (2011)

5



1.1 Spatial statistics: Geostatistical approaches

geostatistical data are referenced at potentially scattered loca-

tions in space or space-time

interest thus centers on building statistical models in continu-

ous space or space-time: given observations Z(x1), . . . , Z(xk) at

scattered sites x1, . . . , xk in Rd, we seek to fit a probability model

for the process
{
Z(x) : x ∈ R

d
}

examples include

• meteorological variables such as temperature or precipita-

tion accumulation observed at weather stations

• atmospheric pollutant concentrations observed at environ-

mental monitoring stations

• permeabilities in an aquifer observed at well logs

• ore grades within a deposit or mine
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1.1 Spatial statistics: Geostatistical approaches

major tasks in geostatistics comprise

• the characterization of spatial variability

• spatial prediction

given observations Z(x1), . . . , Z(xk) at x1, . . . , xk ∈ Rd, find a

point predictor for the unknown value of Z at x0 ∈ Rd or,

preferably, find a conditional distribution for Z(x0)

• geostatistical simulation

given observations Z(x1), . . . , Z(xk) at x1, . . . , xk ∈ Rd, sample

conditional realizations of the process {Z(x) : x ∈ Rd}

the state of the art in geostatistics is summarized in Stein (1999)

and Chilès and Delfiner (1999, 2012)
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1.2 Random fields, covariances, and positive definiteness

geostatistical techniques depend on random function, random

field or stochastic process models that are indexed in continuous

space or space-time

{
Z(x) = Z(x, ω) : x ∈ R

d
}

spatial location “chance”
x ∈ Rd ω ∈ Ω

simplifying assumptions on the random field model are crucial,

with the most basic approach requiring stationarity, in that

• the expectation E(Z(x)) exists and does not depend on x ∈ Rd

• the covariance cov(Z(x), Z(x+h)) exists and does not depend

on the location x ∈ Rd
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1.2 Random fields, covariances, and positive definiteness

for any stationary random field {Z(x) : x ∈ Rd}, we can define

the covariance function,

C : Rd → R, h 7→ C(h) = cov(Z(x), Z(x+ h))

and the correlation function,

c : Rd → R, h 7→ c(h) = corr(Z(x), Z(x+ h)) =
C(h)

C(0)

Gaussian random fields are characterized by the first two mo-

ments; in particular, mean zero unit variance stationary Gaussian

random fields are characterized by the correlation function

these functions are positive definite: given any finite system of

real numbers a1, . . . , am ∈ R and locations x1, . . . , xm ∈ Rd,

m∑

i=1

m∑

j=1

aiaj C(xi − xj) = var




m∑

j=1

ajZ(xj)


 ≥ 0
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1.2 Random fields, covariances, and positive definiteness

Theorem (Kolmogorov; Bochner): Let c : Rd → R be continu-

ous with c(0) = 1. Then the following statements are equivalent:

(a) The function c is positive definite.

(b) There exists a mean zero unit variance stationary Gaussian

random field with covariance and correlation function c.

(c) There exists a symmetric probability measure F on Rd with

Fourier transform

c(h) =

∫

Rd
eih

′x dF(x). (1)

(d) There exists a d-variate symmetric random vector X with

characteristic function c(h) = E[eih
′X].

The probability measure F in the spectral representation (1) is

called the spectral measure.
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1.2 Random fields, covariances, and positive definiteness

Inversion theorem. If the correlation function c : Rd → R is

continuous and integrable, the associated spectral measure F is

absolutely continuous with spectral density

f(x) =
1

(2π)d

∫

Rd
e−ix

′h c(h) dh, x ∈ R
d.

Corollary. Suppose that c : Rd → R is continuous and integrable.

Then c is a correlation function if, and only if, c(0) = 1 and

f(x) =
1

(2π)d

∫

Rd
e−ix

′h c(h) dh ≥ 0

for almost all x ∈ Rd.

Positive definite Nonnegative

Probability measure characteristic function probability density function

Stationary random field correlation function spectral density function
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1.3 Stationary and isotropic correlation functions

in practice, the correlation function is often assumed to be

isotropic, in that
c(h) = ϕ(|h|), h ∈ R

d

for some function ϕ : [0,∞) → R, where | · | denotes the Euclidean

norm or distance
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1.3 Stationary and isotropic correlation functions

the discontinuous nugget effect,

c(h) =

{
1, h = 0,
0, h 6= 0,

is an isotropic correlation function in Rd that represents measure-

ment error and/or microscale variability

in dimension d ≥ 2, every measurable isotropic correlation function

c(h) = ϕ(|h|), h ∈ R
d

is a convex combination of a nugget effect and a continuous

correlation function

thus, we may assume from now on that ϕ is continuous
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1.3 Stationary and isotropic correlation functions

class Φd:

Φd =

{
ϕ : [0,∞) → R

∣∣∣∣∣
ϕ is continuous, ϕ(0) = 1, and

h 7→ ϕ(|h|) is positive definite in Rd

}

multiple interpretations of the class Φd:

• continuous correlation functions of stationary and isotropic

random fields in Rd

• characteristic functions of isotropic random vectors in Rd

• continuous and isotropic, standardized positive definite func-

tions in Rd

quite obviously,

Φ1 ⊃ Φ2 ⊃ · · · and Φd ↓ Φ∞ =
∞⋂

d=1

Φd
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1.3 Stationary and isotropic correlation functions

Theorem (Schoenberg):

(a) The members of the class Φd are of the form

ϕ(t) =

∫

[0,∞)
Ωd(rt) dF(r)

for t ≥ 0, where F is a probability measure on [0,∞), i.e., they

are scale mixtures of the Bessel function

Ωd(t) = Γ(d/2)

(
2

t

)(d−2)/2
J(d−2)/2(t).

(b) The members of the class Φ∞ are of the form

ϕ(t) =

∫

[0,∞)
e−r

2t2 dF(r)

for t ≥ 0, where F is a probability measure on [0,∞), i.e., they

are scale mixtures of the Gaussian function, exp(−t2).
In particular, they are nonnegative and decreasing functions

with support [0,∞).

15



1.3 Stationary and isotropic correlation functions

Dimension d 1 2 3 4 5 ∞

Ωd(t) cos t J0(t)
sin t

t
2
J1(t)

t
3
sin t− t cos t

t3
exp(−t2)

Lower bound −1 −0.403 −0.218 −0.133 −0.086 0

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14t

limd→∞Ωd(
√
2dt) = exp(−t2) uniformly in t ≥ 0
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1.4 Examples

Matérn family

ϕ(t) =
21−ν

Γ(ν)

(
t

s

)ν
Kν

(
t

s

)
(ν > 0; s > 0)

member of the class Φ∞
studied by Whittle (1954), Matérn (1960) and Tatarski (1961)

ν → ∞ ϕ(t) = exp(−t2) when s−1 = 2
√
ν

ν = 5
2

ϕ(t) =
(
1+ t+ t2/3

)
exp(−t)

ν = 3
2

ϕ(t) = (1 + t) exp(−t)
ν = 1 ϕ(t) = tK1(t)

ν = 1
2

ϕ(t) = exp(−t)

ν → 0 nugget effect
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1
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t
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1.4 Examples

Powered exponential family

ϕ(t) = e−(t/s)α (α ∈ (0,2]; s > 0)

member of the class Φ∞

α = 2 Gaussian ϕ(t) = exp(−t2)
α = 1 exponential ϕ(t) = exp(−t)

α→ 0 nugget effect

Cauchy family

ϕ(t) =

(
1+

(
t

s

)α )−β/α
(α ∈ (0,2]; β > 0; s > 0)

member of the class Φ∞
studied by Gneiting and Schlather (2004)
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1.4 Examples

as noted, the members of the class Φ∞ are nonnegative and

decreasing functions with support [0,∞)

moderate negative correlations and non-monotonicity are ocas-

sionally observed and referred to as hole effect

a possible hole effect correlation model is

ϕ(t) = exp(−at) cos(bt)
(
a > 0;

|b|
a

≤ tan
π

2d

)

member of the class Φd ⇐⇒ |b|
a ≤ tan π

2d
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1.4 Examples

covariance structures with compact support allow for computa-

tionally efficient prediction and simulation

parametric families of compactly supported members of the class

Φ3 with support parameter s > 0 and shape parameter τ ≥ 0

Family Analytic Expression Smoothness

Spherical ϕ(t) =

(
1+

1

2

t

s

)(
1− t

s

)2

+

k = 0 α = 1

Askey ϕ(t) =

(
1− t

s

)2+τ

+

k = 0 α = 1

Wendland ϕ(t) =

(
1+ (4+ τ)

t

s

)(
1− t

s

)4+τ

+

k = 1 α = 2
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1.5 Sample path properties

a stationary and isotropic, standardized Gaussian random field is

characterized by the correlation function,

c(h) = ϕ(|h|), h ∈ R
d

the sample path properties of the random field thus depend on

the analytic properties of the function ϕ

behavior at the origin: if ϕ has fractal index α ∈ (0, 2], in the

sense that
1− ϕ(t) ∼ tα as t ↓ 0,

then the graph {(x, Z(x)) : x ∈ Rd} ⊂ Rd+1 of a sample path of

the Gaussian random field has fractal or Hausdorff dimension

D = d +1− α

2

almost surely
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1.5 Sample path properties

behavior at the origin: if ϕ has fractal index α ∈ (0, 2], the graph

of a Gaussian sample path has fractal or Hausdorff dimension

D = d+ 1 − α
2 almost surely

α= 0.5 α = 1 α= 2

D = 2.75 D = 2.5 D = 2

if the fractal index is α = 2 then u → ϕ(|u|) is at least twice

differentiable on R and the following holds:

u 7→ ϕ(|u|) is 2k times differentiable ⇐⇒ a Gaussian sample path

is k times differentiable almost surely

Matérn family: α = 2min(ν,1); k = ⌈ν⌉; powered exponential
and Cauchy families: k = 0 if α ∈ (0,2) and k = ∞ if α = 2
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1.5 Sample path properties

long-memory dependence: typically, not important in spatial

prediction, but a significant consideration in estimation problems

Hurst effect in time series analysis:

(Xt)t=1,2,... standard time series model ⇒ sd(X̄n) ∼ n−1/2

long-memory models with Hurst coefficient H ∈ [1
2
,1) have

sd(X̄n) ∼ n−(1−H) as n→ ∞

empirically observed in time series data (Hurst 1951: Nile river)

as well as in spatial data (Fairfield Smith 1938; Whittle 1956,

1962: agricultural field trials)

corresponds to a power law for the correlation function,

ϕ(t) ∼ t−β as t → ∞
where β = 2−2H ∈ (0,1], i.e., H ∈ [1

2
,1), with the Cauchy family

serving as key example
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1.5 Sample path properties

β = 0.025
H = 0.9875

β = 0.2
H = 0.9

β = 0.9
H = 0.55
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1.5 Sample path properties
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1.6 Non-stationary covariance functions

stationary and isotropic models form the basic building blocks

of more realistic and more complex, non-stationary models

in a general, typically Gaussian random field
{
Z(x) : x ∈ R

d
}

the covariance between Z(x) and Z(y) depends on both x and y,

and simplifying assumptions may not hold

in this situation, we call the map

K : Rd × R
d → R, (x, y) 7→ K(x, y) = cov (Z(x), Z(y))

the non-stationary covariance function of the random field

K is positive definite: given any finite system of real numbers

a1, . . . , am ∈ R and locations x1, . . . , xm ∈ Rd,

m∑

i=1

m∑

j=1

aiajK(xi, xj) = var




m∑

j=1

ajZ(xj)


 ≥ 0
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1.6 Non-stationary covariance functions

similar to the stationary and isotropic case, the sample path

properties of non-stationary Gaussian random fields (Hausdorff

dimension and smoothness of the realizations, . . . ) can be read

off the correlation function (Adler 1981, 2009)

however, the probabilistic properties might be localized and thus

might vary spatially

at least three basic construction principles:

• space deformation and space embedding approaches (Samp-

son and Guttorp 1992)

• spatial moving average or process convolution approaches

(Higdon 1998; Paciorek and Schervish 2006)

• approaches based on stochastic partial differential equa-

tions (Lindgren, Rue and Lindström 2011)
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1.6 Non-stationary covariance functions

space deformation and space embedding approaches

general idea: given a random field {Z(x) : x ∈ Rd } find a generally
nonlinear transformation function

T : Rd × R
e → R

n,

which might depend on both the spatial coordinate, x ∈ Rd, and

spatially varying covariates, t(x) ∈ Re, such that

K(x, y) = σ(x)σ(y)ϕ(|T(x, t(x))−T(y, t(y))|),
where σ : Rd → [0,∞) is a spatially varying standard deviation
and ϕ ∈ Φn is an isotropic correlation function

statistical challenges lie in

• the choice of a suitable family of covariates, t(x) ∈ Re, and

of a suitable embedding dimension, n

• the parameterization and joint estimation of the spatially

varying standard deviation, σ, the transformation function,

T, and the isotropic correlation function, ϕ
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1.6 Non-stationary covariance functions

moving average or process convolution approaches

a general process convolution is defined as the random field
{
Z(x) =

∫

Rd
ux(y) dW (y) : x ∈ R

d
}

where W represents a latent, typically Gaussian white noise pro-

cess or Lévy basis, and ux : Rd → R is a square-integrable, locally

varying moving average kernel

in particular, if

ux(y) = v(x− y)

for some fixed function v : Rd → R, the process convolution is

stationary, with the covariance function

C : Rd → R, h 7→ C(h) = v ∗ v(h) =

∫

Rd
v(x)v(x+ h) dx

being the self-convolution of the kernel v

if v is the indicator function of a sphere and d = 3, we recover the

spherical correlation function
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1.6 Non-stationary covariance functions

in the general case, a process convolution has non-stationary

covariance

K : Rd × R
d → R

d, (x, y) 7→ K(x, y) =

∫

Rd
ux(z)uy(z) dz

can model the kernel, which is arbitrary subject to sq. integrabil-

ity, rather than the covariance, which needs to be positive definite

the domain of the process is easily restricted to irregular areas

of interest, in both Gaussian and non-Gaussian settings

the approach allows for parametric families of non-stationary co-

variance functions in closed form (Paciorek and Schervish 2006;

Schlather 2010; Anderes and Stein 2011)

e.g., if for each x ∈ R the matrix Σ(x) ∈ Rd×d is positive definite,

then
K(x, y) = exp

(
−(x− y)′ (Σ(x) +Σ(y))−1 (x− y)

)

is a non-stationary covariance function
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2.1 Global data

in geophysical, meteorological and climatological applications, data

and processes need to be modeled on the surface of the Earth,

rather than a Euclidean space

this motivates the study of random fields
{
Z(x) : x ∈ S

d
}
,

where S
d = {x ∈ Rd+1 : |x| = 1} denotes the unit sphere in Rd+1

the process is isotropic if there exists a function ψ : [0, π] → R

such that

cov(Z(x), Z(y)) = ψ(θ(x, y)) for x, y ∈ S
d,

where

θ(x, y) = arccos(〈x, y〉)
is the great circle or geodesic distance on Sd and 〈·, ·〉 denotes

the scalar product in Rd+1
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2.2 Isotropic correlation functions on spheres

class Ψd:

Ψd =

{
ψ : [0, π] → R

∣∣∣∣∣
ψ is continuous, ψ(0) = 1, and

θ 7→ ψ(θ) is a correlation function on Sd

}

interpretation of the class Ψd:

• continuous and isotropic correlation functions: there exists a

process {Z(x) : x ∈ Sd } such that corr(Z(x), Z(y)) = ψ(θ(x, y))

• continuous and isotropic, standardized positive definite func-

tions: given any finite system of real numbers a1, . . . , am ∈ R

and locations x1, . . . , xm ∈ Sd,

m∑

i=1

m∑

j=1

aiaj ψ(θ(xi, xj)) ≥ 0

quite obviously,

Ψ1 ⊃ Ψ2 ⊃ · · · and Ψd ↓ Ψ∞ =
∞⋂

d=1

Ψd
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2.2 Isotropic correlation functions on spheres

natural construction: if ϕ : [0,∞) → R is a member of the class

Φd+1 for some d ≥ 1, then the function

ψ : [0, π] → R, θ 7→ ϕ
(
2 sin θ

2

)

corresponds to the restriction of an isotropic correlation function

in Rd+1 to the sphere Sd and thus it belongs to the class Ψd

the construction preserves the fractal index: if ϕ has fractal

index α ∈ (0,2] then ψ(0)− ψ(θ) = O(θα) as θ ↓ 0

α= 1.9 α = 1.5 α = 1.0
D = 2.05 D = 2.25 D = 2.50
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2.2 Isotropic correlation functions on spheres

however, this natural construction is restrictive

to characterize the class Ψd, we consider orthogonal polyno-

mials with argument cos θ

given λ > 0 and an integer k ≥ 0, the function Cλk (cos θ) is defined

by the expansion

1

(1 + r2 − 2r cos θ)λ
=

∞∑

k=0

rkCλk (cos θ) for θ ∈ [0, π],

where r ∈ (−1,1) and Cλk is the ultraspherical or Gegenbauer

polynomial of order λ and degree k

in particular, Cλ0 (cos θ) ∝ 1 and Cλ1 (cos θ) ∝ cos θ for all λ > 0

the class Ψd is convex, and thus we expect Choquet represen-

tations in terms of extreme members in analogy to Φd
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2.2 Isotropic correlation functions on spheres

Theorem (Schoenberg):

(a) The members of the class Ψ1 are of the form

ψ(θ) =
∞∑

k=0

b1,k cos(kθ)

with coefficients b1,k ≥ 0 that sum to 1.

(b) If d ≥ 2, the members of the class Ψd are of the form

ψ(θ) =
∞∑

k=0

bd,k
C
(d−1)/2
k (cos θ)

C
(d−1)/2
k (1)

with coefficients bd,k ≥ 0 that sum to 1.

(c) The members of the class Ψ∞ are of the form

ψ(θ) =
∞∑

k=0

b∞,k (cos θ)
k

with coefficients b∞,k ≥ 0 that sum to 1.
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2.2 Isotropic correlation functions on spheres

the members of the class Ψ1 admit the Fourier cosine represen-

tation
ψ(θ) =

∞∑

k=0

b1,k cos(kθ),

where

b1,k =
2

π

∫ π
0
cos(kθ)ψ(θ) dθ for k ≥ 1

the members of the class Ψ2 admit the Legendre representation

ψ(θ) =
∞∑

k=0

b2,k

k+1
Pk(cos θ),

where Pk is the Legendre polynomial of degree k ≥ 0 and

b2,k =
2k+1

2

∫ π
0
Pk(cos θ) sin θ ψ(θ) dθ
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2.2 Isotropic correlation functions on spheres

generally, if d ≥ 2 the coefficient bd,k in the Gegenbauer expan-

sion of a function ψ ∈ Ψd equals

bd,k =
2k+ d− 1

23−d π
(Γ(d−1

2 ))2

Γ(d− 1)

∫ π
0
C
(d−1)/2
k (cos θ) (sin θ)d−1 ψ(θ) dθ

the Fourier cosine and Gegenbauer coefficients of a continuous

function ψ : [0, π] → R relate to each other in dimension walks,

in that

bd+2,k =
(k+ d− 1)(k+ d)

d (2k+ d− 1)
bd,k −

(k+1)(k+2)

d (2k+ d+3)
bd,k+2

for integers d ≥ 1 and k ≥ 1

in particular,

b3,k =
1

2
(k+1)

(
b1,k − b1,k+2

)
,

whence a function ψ ∈ Ψ1 belongs to the class Ψ3 if, and only

if, the sequences of both the even and the odd Fourier cosine

coefficients are nonincreasing
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2.3 Examples

Theorem: If ϕ ∈ Φ∞ then the function

ψ : [0, π] → R, θ 7→ ϕ(θ1/2)

belongs to the class Ψ∞.

Family Analytic Expression Valid Parameter Range

Powered exponential ψ(θ) = exp

(
−
(
θ

c

)α)
c > 0; α ∈ (0,1]

Cauchy ψ(θ) =

(
1+

(
θ

c

)α)−τ/α
c > 0; α ∈ (0,1]; τ > 0

Matérn ψ(θ) =
2ν−1

Γ(ν)

(
θ1/2

c

)ν
Kν

(
θ1/2

c

)
c > 0; ν > 0

Matérn ψ(θ) =
2ν−1

Γ(ν)

(
θ

c

)ν
Kν

(
θ

c

)
c > 0; ν ∈ (0, 1

2
]
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2.3 Examples

Theorem: Suppose that d = 1 or d = 3. If the member ϕ ∈ Φd
satisfies ϕ(t) = 0 for t ≥ π, the function defined by

ψ : [0, π] → R, θ 7→ ϕ(θ)

belongs to the class Ψd.

thus, if d = 1 or d = 3 compactly supported members of the

class Φd induce locally supported function in the class Ψd

Family Analytic Expression Parameter Range in Ψ3

Spherical ψ(θ) =

(
1+

1

2

θ

c

)(
1− θ

c

)2

+

c ∈ (0, π]

Askey ψ(θ) =

(
1− θ

c

)τ

+

c ∈ (0, π]; τ ≥ 2

Wendland ψ(θ) =

(
1+ τ

θ

c

)(
1− θ

c

)τ

+

c ∈ (0, π]; τ ≥ 4
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2.4 Some challenges

Problem 1. For d ≥ 1 and c ∈ (0, π), find the infimum of the

curvature at the origin among the members ψ of the class Ψd

with ψ(θ) = 0 for θ ≥ c.

Problem 2. For d ≥ 1 and c ∈ (0, π), find the associated Turán

constant, i.e., find the supremum of
∫

Sd
ψ(θ(yo, y)) dy

among the members ψ of the class Ψd with ψ(θ) = 0 for θ ≥ c.

Problem 3. For d ≥ 1, c ∈ (0, π) and θ ∈ (0, c), find the associated

pointwise Turán constant, that is, find the supremum of ψ(θ)

among the members ψ of the class Ψd with ψ(θ) = 0 for θ ≥ c.

42



2.4 Some challenges

Conjecture 4. If d = 2l+ 1 and c ∈ (0, π) the truncated power

function,

ψ(θ) =

(
1− θ

c

)τ

+

belongs to the class Ψd if, and only if, τ ≥ l+1.

Problem 5. For what values of α ∈ (0,2] and c ∈ (0, π] does the

truncated sine power function,

ψ(θ) =

(
1−

(
sin

π

2

θ

c

)α ) 1(θ ≤ c),

belong to the class Ψd?

Conjecture 6. If ψ ∈ Ψd has fractal index α ∈ (0,2] the associ-

ated regular Gaussian particle has fractal or Hausdorff dimension

d+1− α
2 almost surely.
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2.4 Some challenges

Problem 7. Develop covariance models for multivariate station-

ary and isotropic random fields on Sd.

Problem 8. Develop covariance models for non-stationary ran-

dom fields on Sd.

Problem 9. Develop covariance models for spatio-temporal ran-

dom fields on the domain Sd × R.
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Part 3

Space-Time Covariance Functions

3.1 Geostatistical models for spatio-temporal data

3.2 Stationarity, separability and full symmetry

3.3 Stationary space-time covariance functions

3.4 Irish wind data
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3.1 Geostatistical models for spatio-temporal data

spatio-temporal data in environmental monitoring or meteorol-

ogy typically consist of multiple time series at scattered sites

Irish wind data (Haslett and Raftery 1989): daily averages of

wind speed recorded at 11 meteorological stations in Ireland in

1961–1978

Station Latitude Longitude Mean (m· s−1)

Valentia 51 56’ 10 15’ 5.48

Belmullet 54 14’ 10 00’ 6.75

Claremorris 53 43’ 8 59’ 4.32

Shannon 52 42’ 8 55’ 5.38

Roche’s Point 51 48’ 8 15’ 6.36

Birr 53 05’ 7 53’ 3.65

Mullingar 53 32’ 7 22’ 4.38

Malin Head 55 22’ 7 20’ 8.03

Kilkenny 52 40’ 7 16’ 3.25

Clones 54 11’ 7 14’ 4.48

Dublin 53 26’ 6 15’ 5.05
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3.1 Geostatistical models for spatio-temporal data

a typical problem is spatio-temporal prediction:

given observations Z(s1, t1), . . . , Z(sk, tk), find a point predictor

for the unknown value of Z the space-time coordinate (s0, t0) or,

preferably, find a conditional distribution for Z(s0, t0)

geostatistical space-time models: spatio-temporal, typically

Gaussian random field
{
Z(s, t) : (s, t) ∈ R

d× R

}

indexed in continuous space, s ∈ R
d, and continuous time, t ∈ R

allows for prediction and interpolation at any location and any

time — typically, but not necessarily time-forward

alternative spatio-temporal domains: Rd×Z (discrete time), Sd×R

or Sd × Z (global models with the sphere as spatial domain)
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3.2 Stationarity, separability and full symmetry

spatio-temporal, typically Gaussian random field
{
Z(s, t) : (s, t) ∈ R

d× R

}

Gaussian processes are characterized by their first and second

moments

after spatio-temporal trend removal, we may assume that Z(s, t)

has mean zero

simplifying assumptions on the covariance structure:

the spatio-temporal random field has stationary covariance struc-

ture if cov{Z(s1, t1), Z(s2, t2)} depends only on the spatial sepa-

ration vector, s1 − s2 ∈ Rd, and the temporal lag, t1 − t2 ∈ R

then there exists a space-time covariance function

C : Rd× R → R, (h, u) 7→ C(h, u) = cov{Z(s, t), Z(s+ h, t+ u)}
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3.2 Stationarity, separability and full symmetry

simplifying assumptions on the covariance structure:

the spatio-temporal random field has fully symmetric covariance

structure if

cov{Z(s1, t1), Z(s2, t2)} = cov{Z(s1, t2), Z(s2, t1)}
physically interpretable in terms of transport effects and prevail-
ing winds or ocean currents

Westerly Station Easterly Station rWE rEW

Valentia Roche’s Point 0.50 0.37

Belmullet Clones 0.52 0.40

Claremorris Mullingar 0.51 0.42

Claremorris Dublin 0.51 0.38

the spatio-temporal random field has separable covariance struc-

ture if there exist purely spatial and purely temporal covariance

functions covS and covT such that

cov{Z(s1, t1), Z(s2, t2)} = covS(s1, s2)× covT(t1, t2)
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3.2 Stationarity, separability and full symmetry

separability is a special case of full symmetry that may yield

mathematical tractability and computational efficiency

class of all space-time covariance functions

stationary

fully symmetric

separable
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3.3 Stationary space-time covariance functions

we consider a spatio-temporal, typically Gaussian random field
{
Z(s, t) : (s, t) ∈ R

d× R

}

with stationary covariance structure and space-time covariance

function

C(h, u) = cov{Z(s, t), Z(s+ h, t+ u)}

the space-time covariance function is separable if there exist

purely spatial and purely temporal covariance functions CS and

CT such that

C(h, u) = CS(h)× CT(u)

and it is fully symmetric if C(h, u) = C(h,−u) for all spatio-

temporal lags (h, u) ∈ Rd× R

the space-time covariance function is a positive definite function

in the Euclidean space Rd+1 = Rd× R

in particular, Bochner’s theorem applies
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3.3 Stationary space-time covariance functions

Theorem (Cressie and Huang): A continuous, bounded, sym-

metric and integrable function

C : Rd× R → R

is a stationary space-time covariance function if, and only if, the

function

Cω : R → R, u 7→ Cω(u) =

∫

Rd
e−ih

′ω C(h, u) dh

is positive definite for almost all ω ∈ Rd.

Cressie and Huang (1999) used Fourier inversion of Cω(u) with

respect to ω ∈ Rd to construct parametric classes of non-separable

space-time covariance functions
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3.3 Stationary space-time covariance functions

a function η(t), defined for t ≥ 0 or t > 0, is completely mono-

tone if

(−1)k η(k)(t) ≥ 0 (t > 0; k = 0,1,2, . . .)

e.g., if ϕ ∈ Φ∞ then t 7→ η(t) = ϕ(t1/2) is completely monotone

Theorem:

η(t), t ≥ 0 completely monotone

ζ(t), t ≥ 0 strictly positive with a completely monotone derivative

Then

C : Rd× R → R, (h, u) 7→ C(h, u) =
1

ζ(u2)d/2
η

(
|h|2
ζ(u2)

)

is a space-time covariance function
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3.3 Stationary space-time covariance functions

the proof depends on the Cressie-Huang criterion and Bern-

stein’s theorem:

Cω(u) =

∫

Rd
e−ih

′ω C(h;u) dh

=
1

ζ(u2)d/2

∫

Rd
e−ih

′ω η

(
|h|2
ζ(u2)

)
dh

=
1

ζ(u2)d/2

∫

Rd

∫

(0,∞)
e−ih

′ω exp

(
−r |h|2

ζ(u2)

)
dF(r) dh

= πd/2
∫

(0,∞)
exp

(
−|ω|2

4r
ζ
(
u2
)) 1

rd/2
dF(r)

= ϕω
(
u2
)

where

ϕω(t) = πd/2
∫

(0,∞)
exp(−sζ(t)) dGω(s)

for a nondecreasing function Gω

by Bernstein’s theorem, ϕω is completely monotone, whence Cω
is positive definite

55



3.3 Stationary space-time covariance functions

Family Analytic Expression Parameter Range

Matérn η(t) =
2ν−1

Γ(ν)

(
ct1/2

)ν
Kν

(
ct1/2

)
c > 0; ν > 0

Power exp η(t) = exp (− ctγ) c > 0; γ ∈ (0,1]

Cauchy η(t) = (1 + ctγ)−τ c > 0; γ ∈ (0,1]; τ > 0

Logistic η(t) = 2τ
(
exp(ct1/2) + exp(−ct1/2)

)−τ
c > 0; τ > 0

Analytic Expression Parameter Range

ζ(t) = (atα +1)β a > 0; α ∈ (0,1]; β ∈ [0,1]

ζ(t) =
ln(atα + b)

ln b
a > 0; b > 1; α ∈ (0,1]

ζ(t) =
1

b

atα + b

atα + 1
a > 0; b ∈ (0,1]; α ∈ (0,1]
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3.3 Stationary space-time covariance functions

example:

η(t) = exp(−ctγ)
ζ(t) = (atα+1)β

product with CT(u) = σ2(a|u|2α+1)βd/2−1 where d = 2

C(h, u) =
σ2

a|u|2α+1
exp

(
− c|h|2γ
(a|u|2α+1)βγ

)

parameters:
c > 0 space: scale
γ ∈ (0,1] space: smoothness
a > 0 time: scale
α ∈ (0,1] time: smoothness

σ2 > 0 space-time: variance
β ∈ [0,1] space-time: interaction
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3.3 Stationary space-time covariance functions

full symmetry often violated as a result of prevailing winds or

ocean currents and associated transport effects

useful idea: Lagrangian reference frame

specifically, if CS : Rd → R is a stationary spatial covariance
function and V is an Rd-valued random vector then

C(h, u) = ECS(h− V u)

is a stationary space-time covariance function

covariance function of a frozen spatial random field that moves

with random velocity V in Rd; e.g.,

• V = v constant, representing the prevailing wind

• law of V is equal to or fitted from the empirical distribution
of historical wind vectors

• law of V is flow-dependent and governed by the current state

of the atmosphere
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3.4 Irish wind data

Haslett and Raftery (1989)

http://lib.stat.cmu.edu/datasets/

11 meteorological stations in Ireland

1961 to 1978

daily average wind speed in m· s−1

Station Latitude Longitude Mean (m· s−1)

Valentia 51 56’ 10 15’ 5.48

Belmullet 54 14’ 10 00’ 6.75

Claremorris 53 43’ 8 59’ 4.32

Shannon 52 42’ 8 55’ 5.38

Roche’s Point 51 48’ 8 15’ 6.36

Birr 53 05’ 7 53’ 3.65

Mullingar 53 32’ 7 22’ 4.38

Malin Head 55 22’ 7 20’ 8.03

Kilkenny 52 40’ 7 16’ 3.25

Clones 54 11’ 7 14’ 4.48

Dublin 53 26’ 6 15’ 5.05
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3.4 Irish wind data

square root transform

⇒ variance stabilized over stations and time

⇒ marginals approximately normal
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3.4 Irish wind data

seasonal component estimated by least squares using a trigono-

metric regression model
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3.4 Irish wind data

seasonal component and site specific mean removed

⇒ velocity measures

stationarity and spatial isotropy appropriate approximations

successively more general fits that we discuss in terms of corre-

lation structures:

• separable space-time correlation function

• non-separable but fully symmetric correlation function

• general stationary correlation function
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3.4 Irish wind data

purely spatial correlation function

convex combination of an exponential model and a nugget effect

CS(h) = (1− ν) exp(−c|h|) + ν δh=0.

with estimates ν̂ = 0.032 and ĉ = 0.00132
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3.4 Irish wind data

purely temporal correlation function

CT(u) =
1

1+ a|u|2α
with estimates â = 0.901 and α̂ = 0.772

separable space-time correlation function

CSEP(h, u) = CS(h)× CT(u)

=
1− ν

1 + a|u|2α
(
exp(−c|h|) + ν

1− ν
δh=0

)

fitted to spatio-temporal lags (h, u) where |h| ≤ 400 km and |u| ≤ 3

days

64



3.4 Irish wind data

we embed the separable model into a class of generally non-

separable yet fully symmetric space-time correlation functions

CFS(h, u) =
1− ν

1+ a|u|2α

(
exp

(
− c|h|
(1 + a|u|2α)β/2

)
+

ν

1− ν
δh=0

)

now including a space-time interaction parameter β ∈ [0,1],
where β = 0 corresponds to the separable model

weighted least squares estimate is β̂ = 0.61
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3.4 Irish wind data

however, the assumption of full symmetry is clearly violated:

Westerly Station Easterly Station rWE rEW

Valentia Roche’s Point 0.50 0.37

Belmullet Clones 0.52 0.40

Claremorris Mullingar 0.51 0.42

Claremorris Dublin 0.51 0.38

Shannon Kilkenny 0.53 0.42

Mullingar Dublin 0.50 0.45
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3.4 Irish wind data

0.30 0.35 0.40 0.45

0.
35

0.
40

0.
45

0.
50

East to West

W
es

t t
o 

E
as

t

Temporal Lag: 1 Day

0.16 0.20 0.24

0.
16

0.
20

0.
24

East to West

W
es

t t
o 

E
as

t

Temporal Lag: 2 Days

0.10 0.12 0.14 0.16

0.
10

0.
12

0.
14

0.
16

East to West

W
es

t t
o 

E
as

t

Temporal Lag: 3 Days

0.06 0.08 0.10 0.12

0.
06

0.
08

0.
10

0.
12

East to West

W
es

t t
o 

E
as

t

Temporal Lag: 4 Days

67



3.4 Irish wind data
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3.4 Irish wind data

general stationary space-time correlation function

convex combination

CSTN(h, u) = (1− λ)CFS(h, u) + λCLGR(h, u)

of the fully symmetric and a Lagrangian correlation model,

CLGR(h, u) =

(
1− 1

2v
|h1 − vu|

)

+

with longitudinal velocity v = 300 km·d−1 or 3.5 m· s−1, where

h = (h1, h2)
′ has longitudinal (east-west) component h1

a physically motivated and physically justifiable correlation model

that is no longer fully symmetric
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3.4 Irish wind data
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3.4 Irish wind data
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3.4 Irish wind data

for Gaussian processes, conditional distributions for unknown

values are Gaussian

and we can take the center of the conditional distribution as a

point forecast

mean absolute error (MAE) for 1-day ahead point forecasts of

the velocity measures at the 11 meteorological stations during the

1971–1978 test period, based on fits in 1961–1970

Val Bel Clo Sha Roc Birr Mul Mal Kil Clo Dub

SEP .398 .395 .389 .372 .387 .375 .340 .399 .347 .385 .359

FS .399 .396 .389 .372 .384 .373 .338 .396 .344 .382 .356

STAT .397 .395 .387 .369 .379 .370 .334 .393 .339 .377 .351

the more complex and more physically realistic correlation mod-

els yield improved predictive performance
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Part 4

Calibrated probabilistic forecasting at the

Stateline wind energy center

4.1 Probabilistic forecasts

4.2 The Stateline wind energy center

4.3 The regime-switching space-time (RST) method

4.4 Tools for evaluating probabilistic forecasts

4.5 Predictive performance
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4.1 Probabilistic forecasts

consider a real-valued continuous future quantity, Y , such as

an inflation rate or a wind speed

a point forecast is a single real number

a probabilistic forecast is a predictive probability distribution

for Y , represented by a cumulative distribution function (CDF),

F , or a probability density function (PDF), f

http://www.bankofengland.co.uk/inflationreport/irfanch.htm
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4.2 The Stateline wind energy center

wind power: a clean, renewable energy source and the world’s

fastest growing energy source

accurate wind energy forecasts critically important for power

marketing, system reliability and scheduling

of central concern: 2-hour forecast horizon

Stateline wind energy center

• a $300 million wind project located on the Vansycle ridge at

the Washington-Oregon border in the US Pacific Northwest

• 454 wind turbines lined up over 50 square miles

• in the early 2000s the largest wind farm globally

• draws on westerly Columbia Gorge gap flows through the

Cascade Mountains range
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4.2 The Stateline wind energy center
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4.2 The Stateline wind energy center
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4.2 The Stateline wind energy center

2-hour forecasts of hourly average wind speed at Vansycle

joint project with 3TIER Environmental Forecast Group, Inc.,

Seattle (Gneiting, Larson, Westrick, Genton and Aldrich 2006)

data collected by Oregon State University for the Bonneville Power

Administration

• time series of hourly average wind speed at Vansycle, Ken-

newick and Goodnoe Hills

• time series of wind direction at the three sites

notation: we denote the hourly average wind speed at time (hour)

t at Vansycle, Kennewick and Goodnoe Hills by Vt, Kt and Gt,

respectively
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4.3 The regime-switching space-time (RST) method

merges meteorological and statistical expertize

model formulation is parsimonious, yet takes account of the

salient features of wind speed: alternating atmospheric regimes,

temporal and spatial autocorrelation, diurnal and seasonal non-

stationarity, conditional heteroskedasticity and non-Gaussianity

• regime-switching: identifies distinct forecast regimes

• spatio-temporal: utilizes geographically dispersed, recent me-

teorological observations in the vicinity of the wind farm

• probabilistic: provides probabilistic forecasts in the form of

truncated normal predictive PDFs
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4.3 The regime-switching space-time (RST) method
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4.3 The regime-switching space-time (RST) method
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hourly average wind speed two hours ahead at Vansycle
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4.3 The regime-switching space-time (RST) method

regime-switching: 2-hour ahead forecasts of hourly average wind

speed at Vansycle

• westerly regime:

current wind direction at Goodnoe Hills westerly

pronounced diurnal component with wind speeds that peak

in the evening

• easterly regime:

current wind direction at Goodnoe Hills easterly

weak diurnal component

distinct spatio-temporal dependence structures

Vt+2 Vt Vt−1 Vt−2 Kt Kt−1 Kt−2 Gt Gt−1 Gt−2

Westerly .86 .78 .71 .76 .72 .67 .65 .66 .64

Easterly .81 .72 .65 .56 .50 .45 .22 .21 .19
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4.3 The regime-switching space-time (RST) method

forecasts in the westerly regime:

training set consists of the westerly cases within a 45-day rolling

training period

we fit and remove a diurnal trend component

D̂t = b0 + b1 sin

(
2πt

24

)
+ · · ·+ b4 cos

(
4πt

24

)

to obtain residuals V Rt , KR
t and GRt

preliminary point forecast for the residual at Vansycle:

V̂ Rt+2 = c0 + c1V
R
t + c2V

R
t−1 + c3K

R
t + c4K

R
t−1 + c5G

R
t

preliminary point forecast for the wind speed at Vansycle:

V̂t+2 = D̂t+2 + V̂ Rt+2
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4.3 The regime-switching space-time (RST) method

forecasts in the westerly regime:

probabilistic forecast takes the form of a truncated normal

predictive PDF,

N[0,∞)

(
V̂t+2, σ̂

2
t+2

)
with σ̂t+2 = d0 + d1v

R
t ,

where vRt is a volatility term that averages recent increments in

the residual components of the wind speed series

• truncated normal predictive PDF takes account of the non-

negativity of wind speed: tobit model

• volatility term takes account of conditional heteroskedastic-

ity

maximum likelihood plug-in estimators suboptimal for estimating

predictive distributions

novel method of minimum CRPS estimation: M-estimator de-

rived from a strictly proper scoring rule
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4.3 The regime-switching space-time (RST) method

forecasts in the easterly regime:

training set consists of the easterly cases within a 45-day rolling

training period

we do not need to model the diurnal component

preliminary point forecast for the wind speed at Vansycle:

V̂t+2 = c0 + c1Vt+ c2Vt−1 + c3Kt

probabilistic forecast takes the form of a truncated normal

predictive PDF,

N[0,∞)

(
V̂t+2, σ̂

2
t+2

)
with σ̂t+2 = d0 + d1vt,

where vt is a volatility term that averages recent increments in

the wind speed series
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4.3 The regime-switching space-time (RST) method

2-hour ahead RST predictive PDFs of hourly average wind speed

at Vansycle beginning June 28, 2003
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4.4 Tools for evaluating probabilistic forecasts

Gneiting, Balabdaoui and Raftery (2007) contend that the goal

of probabilistic forecasting is to maximize the sharpness of the

predictive distributions subject to calibration

calibration

refers to the statistical compatibility between the predictive

PDFs and the realizing observations

joint property of the forecasts and the observations

sharpness

refers to the spread of the predictive PDFs

property of the forecasts only
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4.4 Tools for evaluating probabilistic forecasts

to assess calibration, we use the probability integral transform

or PIT (Dawid 1984):

U = F(Y )

PIT histogram: histogram of the empirical PIT values

PIT histogram uniform ⇐⇒ prediction intervals at all levels have

proper coverage

to assess sharpness, we consider the average width of the 90%

central prediction interval, say
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4.4 Tools for evaluating probabilistic forecasts

a scoring rule is a function

s(F, y)

that assigns a numerical score to each pair (F, y), where F is the

predictive CDF and y is the realizing observation

we consider scores to be negatively oriented penalties that fore-

casters aim to minimize

a proper scoring rule s satisfies the expectation inequality

EG s(G, Y ) ≤ EG s(F, Y ) for all F,G,

thereby encouraging honest and careful assessments (Gneiting

and Raftery 2007)

the most popular example is the logarithmic score,

s(f, y) = − log f(y),

i.e., the negative of the predictive PDF, f , evaluated at the

realizing observation, y

90



4.4 Tools for evaluating probabilistic forecasts

my favorite proper scoring rule score is the continuous ranked

probability score,

crps(F, y) =
∫ ∞

−∞
(F(x)− 1(x ≥ y))2 dx

= EF |X − y| − 1

2
EF |X −X ′|

where X and X ′ are independent random variables with cumulative

distribution function F

the continuous ranked probability score is reported in the same

unit as the observations and generalizes the absolute error,

to which it reduces in the case of a point forecast

provides a direct way of comparing point forecasts and prob-

abilistic forecasts

the kernel score representation allows for analogues on Euclidean

spaces and spheres (Gneiting and Raftery 2007)
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4.5 Predictive performance

competitors:

persistence forecast as reference standard: V̂t+2 = Vt

classical approach (Brown, Katz and Murphy 1984): autoregres-
sive (AR) time series techniques

spatio-temporal approach: our new regime-switching space-
time (RST) method
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4.5 Predictive performance

evaluation period: May–November 2003

point forecasts: mean absolute error (MAE), using the median

of the predictive distribution as point forecast (Gneiting 2011)

probabilistic forecasts: continuous ranked probability score (CR-

PS), PIT histogram, coverage and average width of the 90% cen-

tral prediction interval

reporting scores month by month allows for tests of significance
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4.5 Predictive performance

MAE (m· s−1) May Jun Jul Aug Sep Oct Nov

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51

AR 1.54 1.38 1.50 1.54 1.53 1.67 1.53

RST 1.32 1.18 1.33 1.31 1.36 1.48 1.37

CRPS (m· s−1) May Jun Jul Aug Sep Oct Nov

AR 1.11 1.01 1.10 1.11 1.10 1.22 1.10

RST 0.96 0.85 0.95 0.95 0.97 1.08 1.00

the RST forecasts had a lower CRPS than the AR forecasts in

May, June, . . . , November

under the null hypothesis of equal forecast skill this only happens

with probability (
1

2

)7
=

1

128
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4.5 Predictive performance

Probability Integral Transform

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

AR Forecasts

Probability Integral Transform

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

RST Forecasts

Coverage (%) May Jun Jul Aug Sep Oct Nov

AR 91.1 91.7 89.2 91.5 90.6 87.4 91.4

RST 92.1 89.2 86.7 88.3 87.4 86.0 89.0

Ave Width (m· s−1) May Jun Jul Aug Sep Oct Nov

AR 6.98 6.22 6.21 6.38 6.37 6.40 6.78

RST 5.93 4.83 5.14 5.22 5.15 5.45 5.46
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