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1.1 Introduction

1.1.1 Aims of image analysis

Data arise in the form of images in many different areas and using many
different technologies. Within medical diagnostics, X-rays are probably
the most well-known form of direct imaging, gathering structural infor-
mation about the body by recording the transmission of X-rays. More re-
cent advances have been the various emission-based technologies, PET and
SPECT, which aim to map metabolic activity in the body, and MRI (Fig-
ure 1.1c) which again provides structural information. On two quite dif-
ferent scales, satellites (Figure 1.1a and b) and microscopes (Figure 1.1d)
monitor and record useful scientific information; for example, aerial imag-
ing in different wavebands and at different stages in the growing season can
be used to detect crop subsidy fraud, while some types microscopy can be
used to generate temporal sequences of three dimensional images, leading
to a greater understanding of biological processes. There is an expectation
that technological advances should soon provide solutions to problems such
as automatic face or hand recognition, or unsupervised robotic vision.

A wide range of image processing tasks arise, not merely because of the
range of different applications, but also because of the diversity of goals.
In the medical context, some forms of imaging, such as PET, involve the
use of radioactive material, and so the exposure should ideally be as small
as possible. However this is a compromise with maintaining good image
quality, and so the processing question may be one of making the visual
appearance of the image as clear as possible. In other applications, it may
not be the picture quality which is so much at issue as the extraction of
quantitative information. We may be faced with questions ranging from
“Can you make this picture less blurred” to “Can you describe the packing
structure of any cells in this medium”. Generally tasks of the former type,
trying to improve the image quality, require local actions (deconvolution, or
noise removal for example), and are known as low level tasks. Tasks which
address more global properties of the scene, such as locating or identifying
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FIGURE 1.1. Some examples of image data; (a) A satellite image over an agri-
cultural area, (b) a satellite image of ocean waves, (c) an MRI image of the brain,
and (d) a confocal microscopy image of cells.

objects, are referred to as high-level tasks.
One unifying theme for the different types of imaging problems is that

they may generally be regarded as being of the forms

Signal = Image⊗ Noise, (1.1)

or
Signal = f(Image) ⊗ Noise, (1.2)

where ⊗ represents a suitable combination operator, and the function f
indicates that the signal is not of the same format as the original image
(for example, in emission tomography, the signals are emission counts along
lines through the body). Notice that we are being rather vague about what
the image actually is; this is a point to which we will return when we discuss
modelling for different tasks.

1.1.2 Bayesian approach

What role can Bayesian statistics play in image analysis and processing?
This is a particularly pertinent question given that there are many quick,
often deterministic, algorithms developed in the computer science and elec-
trical engineering fields. As we see it, there are three main contributions:
The first is to model the noise structure adequately; the second is to reg-
ularise underdetermined systems through the use of a prior distribution;
and the final, possibly most important role, is to be able to provide confi-
dence statements about the output results. Increasingly, with the advance
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in technology, the goals of the imaging are more complex than before and
the questions being posed are more quantitative than qualitative. This is
particularly an issue when studies also have a temporal aspect where it is
important to be able to separate real change from noise.

In these notes, we will denote the underlying image by x, although for
the moment we postpone saying exactly what x is, and the corresponding
signal by y. Often, but not always, y will be a lattice of discrete values; in
which case, the individual components of y are known as pixels (short for
picture element). Bayes theorem allows us to write

π(x | y) =
π(y | x)π(x)

π(y)
∝ π(y | x)π(x) (1.3)

where the likelihood, π(y|x), describes the data formation process for a
particular underlying image, while the prior, π(x), encodes any prior be-
liefs about the properties of such underlying images. The marginal for the
data π(y) is uninformative regarding x. We will of course be interested
in drawing inferences about x based on the posterior π(x|y). To do this
we will need to specify various components of the model. First we must
decide what a suitable representational form is for x, and to a large extent
this will depend on what the objectives of the imaging are. We must then
decide upon appropriate prior and likelihood models. In the following two
sections we will discuss some modelling possibilities, and also describe as-
sociated issues of the treatment of nuisance parameters and the machinery
for inference.

1.1.3 Further reading

As this chapter is a tutorial and not a research paper, we have been rel-
atively relaxed about referring to all the appropriate sources for some of
the more basic material. Further, we do not claim to give a complete, or
even almost complete, overview of this huge field. There are many top-
ics which could have been discussed but which are not mentioned at all.
For the reader who wishes to learn more about this field, there are several
good sources. A good start might be the RSS discussion papers (Besag
1974, Besag 1986, Grenander & Miller 1994, Glasbey & Mardia 2001) (one
in each decade), Geman & Geman (1984) and Geman (1990) are essential
reading, as is Grenander (1993), although this might be a bit tough. The
books by Winkler (1995) and Dryden & Mardia (1999) are also worth read-
ing. Nice applications of high-level models can also be found in Blake &
Isard (1998).



4 Merrilee A. Hurn , Oddvar K. Husby , H̊avard Rue

c)b)a)

FIGURE 1.2. Common neighbourhood structures in imaging, four, eight or twelve
nearest neighbours.

1.2 Markov random field models

We will begin with models where the representation for x is as that for y,
that is as a list of pixel values. We will need some definitions: Let I be the
set of sites or pixels in the image which is assumed to be finite. Each i ∈ I
is a coordinate in the lattice. In order to define a pixel-based model for
images, we turn to the class of Markov random fields . We begin by defining
a symmetric neighbourhood relation ∼ on I, if i is a neighbour of j (written
as i ∼ j) then j is a neighbour of i. By convention i is not a neighbour of
itself. A random field is then a collection of random variables {xi : i ∈ I}
where each xi takes values in a finite set χ. Denote the neighbours of i by
∂i. For a subset of sites A ⊆ I we also use the notation xA = {xi : i ∈ A}
and x−A = {xi : i ∈ I \ A}. An x configuration is an element of χ|I|.
A random field is called a Markov random field (MRF) if the conditional
distribution of any pixel given the rest (also called its local characteristic)
only depends on the values of that pixel’s neighbours,

π(xi | x−i) = π(xi | x∂i). (1.4)

Commonly used neighbourhood structures in imaging are four, eight or
twelve nearest neighbours, see Figure 1.2.

MRFs are important in imaging for two main reasons:

1. Modelling the joint distribution of an image x on the lattice I is a
daunting task because it is not immediately clear even how to be-
gin. Approaching the issue through the full conditionals breaks the
problem down into more manageable tasks, in the sense that we may
be able to say more clearly how we think xi behaves if we know the
configuration of its neighbours.

2. There is an important connection between Markov chain Monte Carlo
methods (MCMC) and MRFs, in that single-site updating schemes
in MCMC only require evaluations of the local full conditionals (1.4).
If we assume that the number of neighbours is very considerably
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less than n = |I|, as is the case for almost all applications, then a
full sweep of the image using a Gibbs sampler, say, requires O(n)
operations for a MRF, as opposed to O(n2) operations for a random
field lacking this local property.

Although we might therefore approach the modelling problem by specifying
a neighbourhood and the full conditionals for each site, one very important
issue arises: Given a set of local characteristics, under what conditions are
we guaranteed that a legitimate joint density exists? Is this joint density
unique and what is it? These are delicate questions. Suppose we have a set
of full conditionals, and we wish to construct a corresponding joint density.
Since the joint density sums to 1, it is enough to study π(x)/π(x∗), for
some reference configuration x∗. By considering cancellation of successive
terms (and assuming π(·) > 0), this can be written

π(x)

π(x∗)
=

n∏

i=1

π(x∗1, . . . , x
∗
i , xi+1, xi+2, . . . , xn)

π(x∗1, . . . , x
∗
i , x

∗
i+1, xi+2, . . . , xn)

=

n∏

i=1

π(xi+1|x∗1, . . . , x∗i , xi+2, . . . , xn)

π(x∗i+1|x∗1, . . . , x∗i , xi+2, . . . , xn)
. (1.5)

Hence, we can obtain the joint density from a product of ratios of full con-
ditionals, after renormalisation. Note that only the neighbours are needed
in the above conditioning, but this we ignore for notational convenience.
For a set of full conditionals to define a legitimate joint density, we must
ensure that the joint density as defined in (1.5) is invariant to the order-
ing of the indices, and further, is invariant to the choice of the reference
state x∗. These are the consistency requirements on the full conditionals.
Although it is possible, in theory, to verify these consistency requirements
directly, we nearly always make use of the Hammersley-Clifford theorem.
This theorem states that a set of full conditionals defines a legitimate joint
density if and only if they are derived from a joint density of a particular
form.

Theorem 1 (Hammersley-Clifford) A distribution satisfying π(x) > 0
for all configurations in χ|I| is a Markov random field if, and only if, it has
a joint density of the form

π(x) =
1

Z
exp

(
−
∑

C∈C

ΦC(xC)

)
(1.6)

for some functions {ΦC}, where C is the set of allcliques (a clique is defined
to be any subset of sites where every pair of these sites are neighbours) and
Z is the normalising constant

Z =
∑

x

exp

(
−
∑

C∈C

ΦC(xC)

)
<∞. (1.7)
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The easier direction of the proof is to verify that a distribution of the
form of (1.6) satisfies the Markov property (1.4). This follows from noting
that

π(xi | x−i) ∝ π(x) ∝ exp

(
−
∑

C∈C

ΦC(xC)

)
. (1.8)

Normalising the above expression over all possible values of xi, notice that
all terms ΦC(xC) not involving xi cancel out, and hence the result. It is
far harder to prove the converse see, for example, Winkler (1995).

The theorem can be used in at least two ways. The first is to confirm that
a collection of full conditionals (that is, the distribution of one component
conditional on all the others) does define a legitimate joint density when we
can find a distribution of the form (1.6) where the full conditionals match.
Secondly, and more importantly, it says that instead of constructing full
conditionals directly, we could construct them implicitly though the choice
of so-called potential functions ΦC .

1.3 Models for binary and categorical images

In this section we discuss the use of theIsing model and its extension,
the Potts model, for binary images images with more than two unordered
colours. We will present the material in a reasonable level of detail since
many of the ideas generalise quite readily to grey-level images and even high
level models as well. We will begin by describing the models themselves, and
their contribution to posterior distributions for images, and then discuss
how to simulate from such systems.

1.3.1 Models for binary images

Suppose the image of interest is binary, where we typically refer to each
pixel xi as foreground if xi = 1 (black), or background if xi = 0 (white).
What are our prior beliefs about such scenes x? For a start, we could
think of how a pixel xi might behave conditional on everything else in the
image. Assuming a four nearest neighbours scheme, consider the situation
in Figure 1.3a. Here the four nearest neighbours of xi are black, so what
probability do we wish to assign to xi also being black? Of course, this will
depend on the context and what type of images we are studying, but it
seems reasonable that this probability should increase with an increasing
number of neighbouring black pixels. One possibility would be to use

π(xi is black | k black neighbours) ∝ exp(βk) (1.9)

where β is a positive parameter. The normalising constant here is simply
exp(β number of white neighbours) + exp(β number of black neighbours).
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??

(a) (b)

FIGURE 1.3. The pixel xi marked as “?”and two different configurations for its
four nearest neighbours

This choice implies that there is no reason to treat the background and
the foreground differently, since the probabilities for xi = 1 and xi = 0 in
Figure 1.3b are both 1/2. Also if we swap white pixels for black, and vice
versa, the swapped configuration has the same probability as the original
one.

We now have to appeal to the Hammersley-Clifford theorem. Can we find
potential functions defined on the cliques such that the local characteristics
are those we have suggested? Recall that the cliques are sets of sites such
that each pair in the set are neighbours. In this case, using four nearest
neighbourhoods, the cliques are the sets of nearest horizontal or nearest
vertical pairs. If we try

ΦC(xC) =

{
−β, both sites in the clique C have the same colour
0, else

(1.10)
then we obtain a joint density

π(x) = exp

(
−
∑

C∈C

ΦC(xC)

)
/ Z(β)

= exp


β

∑

i∼j

I[xi=xj ]


 / Z(β) (1.11)

where i ∼ j denotes neighbouring pairs. The normalising constant

Z(β) =
∑

x

exp


β

∑

i∼j

I[xi=xj ]


 (1.12)

is a function of β. It is easy to verify that this has the same full conditionals
as (1.9), and so our joint density is (1.11).

Obviously we did not make our full conditional suggestion at random!
The joint density in (1.11) is the famous Ising model, named after E. Ising
who presented the model in 1925. It has been used as a model for ferro-
magnetism where each site represents either an up spin or down spin. See
Grimmett (1987) for a review.
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One remarkable feature about the Ising model, is the existence of phase
transition behaviour. Assume for the moment an n×n lattice, where values
outside the boundary are given, and let i∗ denote the interior site closest to
the centre. Will the values at the boundary affect the marginal distribution
of xi∗ as n → ∞? Intuitively one might expect that the effect of what
happens at the boundary will be negligible as the lattice grows, but this is
wrong. It can be shown that for

β > βcritical = log(1 +
√

2) = 0.881373 . . . (1.13)

the effect of the boundary does matter (below this value, it does not). In
consequence, long-range interaction occurs over the critical value, while
only short-range interaction occurs under the critical value. We will see
what this implies clearly when we simulate from the Ising model. The
existence of phase transition adds weight to the assertion that it is very
hard to interpret the global properties of the model by only considering the
full conditionals.

1.3.2 Models for categorical images

One often encounters the situation where there are more than two colours in
the image, for example in a microscopy context these might correspond to
the background, cells of type 1 and cells of type 2 . One of the simplest mod-
els for such categorical settings is the Potts model, which is the multicolour
generalisation of the Ising model. Suppose now that xi ∈ {0, 1, . . . , nc −1},
where the number of colours nc is a positive integer greater than two, then
define

π(x | β) ∝ exp


β

∑

i∼j

I[xi=xj ]


 . (1.14)

Although this expression is similar to that for the Ising model, the config-
urations have changed from binary to multicolour. We see from (1.14) that
each of the nc colours has the same full conditional distribution for xi as
the Ising model if we merge all neighbour sites into the two classes “same
colour as xi” and its converse. This is not unreasonable as the colours are
not ordered; colour 1 is not necessary closer to colour 3 than colour 0.

Further generalisations of the Ising/Potts model

Generalisations of the Ising and Potts models can also include other neigh-
bourhood system than the four nearest neighbours; for example the nearest
eight or twelve neighbours could be used. However, if we decide to use a
larger neighbourhood system, we might also want to experiment with the
potentials to promote a certain behaviour. Another natural generalisation
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FIGURE 1.4. A section of a page of newsprint, displayed in reverse video.

is to allow more general β’s, for example

π(x | {β...}) ∝ exp


∑

i∼j

βijxi
I[xi=xj ]


 . (1.15)

where the strength of the interaction might depend on how far in distance
site i is from site j and the colour they take. However, there is always
a question as to whether it is more fruitful to consider cliques of higher
orders instead of continuing this theme of pairwise interactions only. See, for
example, Tjelmeland & Besag (1998), where some interesting experiments
along these lines are conducted.

1.3.3 Noisy images and the posterior distribution

Generally we are not able to record images exactly, observing data y rather
than x. Using Bayes theorem however, we know how to construct the pos-
terior distribution of x|y, and via this we can learn about the underlying
images. We will now consider two noisy versions of binary images, illustrat-
ing these two using Figure 1.4 as the true underlying image. This image is
a small section of a page of newsprint; character recognition is an impor-
tant imaging task. We will make the assumption that yi and yj (j 6= i) are
conditional independent given x, so that

π(y | x) = π(y1 | x1) · · ·π(yn | xn). (1.16)

Gaussian additive noise

Suppose that the true image is degraded by additiveGaussian noise,

y = x + ε (1.17)

where ε is Gaussian with zero mean, zero covariance and variance σ2, and
ε and x are independent. Then

π(yi | xi) ∝
1

σ
exp

(
−1

2
(yi − xi)

2/σ2

)
. (1.18)



10 Merrilee A. Hurn , Oddvar K. Husby , H̊avard Rue

Note that the observed image y is recorded on a continuous scale (which
may later by discretised) even though x is binary. Gaussian additive noise
is quite commonly assumed as it may mimic additive noise from several
sources. The posterior distribution for the true scene x, is

π(x | y) ∝ exp


β

∑

i∼j

I[xi=xj ] −
1

2

n∑

i=1

(yi − xi)
2/σ2


 (1.19)

∝ exp


β

∑

i∼j

I[xi=xj ] +
∑

i

hi(xi, yi)


 (1.20)

where hi(xi, yi) = − 1
2σ2 (yi−xi)

2. Note that additive constants not depend-
ing on xi can be removed from hi as they will cancel in the normalising
constant. The form of the posterior as given in (1.20) is generic, covering
all types of conditionally independent noise by defining the hi’s as

hi(xi, yi) = log(π(yi | xi)). (1.21)

Flip noise

Flip, or binary, noise occurs when the binary images are recorded with a
Bernoulli probability model that the wrong colour is recorded. We assume
that the error probability p is constant and that each pixel value is recorded
independently

π(yi | xi) =

{
1 − p if yi = xi

p if yi 6= xi
(1.22)

Note that p = 1/2 corresponds to the case where there is no information
about x in y. The posterior distribution can still be represented in the
same way as (1.20), but with

hi(xi, yi) = I[yi=xi] log(
1 − p

p
), (1.23)

where I[] is the indicator function.
Figure 1.5 shows some examples of degraded images using additive Gaus-

sian noise (first column) and flip noise (second column). In the Gaussian
case, we have rescaled the images for display purposes, using a linear grey
scale from black to white so that 0 and 1 correspond to the minimum and
maximum observed values of {yi}. Our task might be to estimate or restore
the images from such data; we will use images Figure 1.5e and Figure 1.5f
in later examples.

1.3.4 Simulation from the Ising model

Models such as the Ising are sufficiently complex, despite their apparently
simple structure, to require Markov chain Monte Carlo methods , see Chap-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 1.5. Newsprint degraded by additive Gaussian noise: (a) σ2 = 0.1; (c)
σ2 = 0.4; (e) σ2 = 0.5; (g) σ2 = 0.6; (i) σ2 = 0.8; or flip-noise:(b) p = 0.1; (d)
p = 0.2; (f) p = 0.25; (h) p = 0.3; (j) p = 0.4.
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ter 1. However, as already mentioned, the local structure of Markov ran-
dom fields lends itself well to the component-wise structure of single site
updating versions of the family of algorithms. Recall that theGibbs sampler
sequentially updates each site from its full conditional. This is particularly
easy as the full conditional for the Ising model is

π(xi | x−i) ∝ exp(β
∑

j∼i

I[xi=xj ]) (1.24)

To simplify the notation, let nb
i =

∑
j∼i I[xj=1] be the number of black

neighbours and nw
i =

∑
j∼i I[xj=0] be the number of white neighbours of i,

then

π(xi = 1 | x−i) =
exp(βnb

i )

exp(βnb
i ) + exp(βnw

i )
. (1.25)

The implementation of the Gibbs-sampler for the Ising model is shown in
Algorithm 1. The function “NextSite” returns which site to update on the

Algorithm 1 Gibbs sampler for the Ising model, niter iterations

Set x = 0 or 1, or fill x with randomly chosen 0’s and 1’s.
for t = 1 to niter do

for j = 1 to n do
i =NextSite(j)
U ∼ Uniform(0, 1)
p = exp(βnb

i )/(exp(βnb
i ) + exp(βnw

i )).
if U < p then
xi = 1

else
xi = 0.

end if
end for

end for

j’th iteration. The simplest choice is to use “NextSite(j) = return j” that
is, updating the sites in numerical order. However, this need not be the case
although it is convenient from a coding point of view. Two other updating
schemes are also commonly used:

Random With this scheme, we chose which pixel to update at random
from the whole image. A benefit here is that no potential “directional
effects” occur. Although there is a small chance that some pixels will
be updated only a few times, this is not a serious problem provided
we run our sampler for sufficiently long (the expected time to visit
all the pixels is O(n log(n))).

Permutation With this scheme, we again chose which pixels to update at
random but now with the constraint that all other pixels are updated
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before updating the same one again, in effect a random permutation.
One implementation of this approach is to have initially a list of all
sites so that each element contain a pixel index. At each call when
the list is not empty, pick one element at random, return the contents
and delete the element from the list. If the list is empty, then start a
complete new list. There are also other approaches.

Obviously, the Gibbs proposals could be replaced equally well by a more
general Hastings proposals , with the obvious modifications. One obvious
choice in this binary situation is to propose to change pixel i to the other
colour from its current value. If all the neighbours of i are black, the Gibbs
sampler will favour xi being black, but this will at the same time prevent
the sampler from moving around, say to the symmetric configuration where
all colours are reversed (and which has the same probability).

Algorithm 2 A Metropolis sampler for the Ising model

Set x = 0 or 1, or fill x with randomly chosen 0’s and 1’s.
for t = 1 to niter do

for j = 1 to n do
i =NextSite(j)
x′i = 1 − xi

d = exp(β
∑

j∼i I[xi=xj ])
d′ = exp(β

∑
j∼i I[x′

i
=xj ])

p = min{1, d′/d}
U ∼ Uniform(0, 1)
if U < p then
xi = x′i

end if
end for

end for

In general, it is numerically unstable to compute the acceptance rate as
in Algorithm 2. The problem arises when taking the ratio of unnormalised
conditional densities. (Sooner or later this will give you severe problems or
seemingly strange things happens with your MCMC-program, if you are
not careful at this point!) A numerically more stable approach deals with
the log densities for as long as possible, that is:

d = β
∑

j∼i I[xi=xj ]

d′ = β
∑

j∼i I[x′

i
=xj ]

p = exp(min{0, d′ − d})

Mixing issues

Both Algorithm 1 and 2 use single site updating, as is common in MCMC
algorithms, and both perform poorly for simulating from the Ising model
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for β higher than or close to the critical value. Assume the current config-
uration is mostly black due to a high value of β. We know that the con-
figuration formed by flipping the colours has the same probability. Using
a single site sampler, we have to change the colour of all the sites individ-
ually. This involves going though a region of very low probability states,
which is of course quite unlikely (although it will happen eventually), so
the convergence of single site algorithms can be painfully slow for large
values of β. Alternative algorithms do exist for the Ising model, most no-
tably the Swendsen-Wang algorithm (Swendsen & Wang 1987) which has
good convergence properties even at βcritical. We now describe this algo-
rithm specifically for simulating from the Ising model, but note that more
general forms exist (Besag & Green 1993); see also Section 1.3.2.

A new, high dimensional variable u is introduced, with one component
of u for each interaction i ∼ j. These uij could be thought of as bond
variables. The joint distribution of x, u is constructed by defining the con-
ditional distribution of u given x, π(u|x). A Markov chain is then con-
structed alternating between transitions on u (by drawing from π(u|x))
and transitions on x. To ensure that this two step procedure retains π(x)
as its stationary distribution, the transition function P (x → x′|u) is cho-
sen to satisfy detailed balance with respect to the conditional π(x|u); the
simplest choice for this is P (x → x′|u) = π(x′|u).

So, given a realisation x, define the uij to be conditionally independent
with

uij | x ∼ Uniform(0, exp(βI[xi=xj ])). (1.26)

That is, given x, the auxiliary variable uij is uniformly distributed either
on [0, exp(β)], if xi = xj , or on [0, 1] otherwise, both of which are clearly
easy to simulate. Notice that the larger β is, the more likely it is that the
uij generated for a neighbouring pair xi = xj is greater than 1.

Then, via the joint distribution of x and u

π(x | u) ∝
∏

ij

I[exp(βI[xi=xj ])≥uij ], (1.27)

i.e. a random colouring of the pixels, subject to the series of constraints.
Notice that whenever uij ≤ 1, the constraint exp(βI[xi=xj ]) ≥ uij is sat-
isfied whatever the values of xi and xj . Conversely, if uij > 1, then for
the constraint to be satisfied, xi and xj must be equal. Groups of x sites
connected by some path of interactions for which each uij > exp(βI[xi=xj ])
are known as clusters, and this definition segments x into disjoint clusters.
Clusters are conditionally independent given u, and can be updated sepa-
rately, each to a single random colour. Notice that the larger β is, the larger
the clusters are likely to be, and thus large changes can be made to x in
precisely the cases where the usual algorithms struggle. It is worth remark-
ing that, unfortunately, generalisations of the Swendsen-Wang algorithm
have as yet generally lacked its spectacular success.
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Some examples

We will now present some realisations from the Ising model using the
Swendsen-Wang algorithm. The image is 200 × 125 (the same size used
in examples later on). We have no boundary conditions, meaning that sites
along the border have three neighbours, while the four corner sites have
two neighbours. The examples are for a range of β values ranging from
β = 0.3 in Figure 1.6a, to β = 1.3 in Figure 1.6h. Note how dramatically
the image changes around βcritical.

It is straightforward to extend these sampling ideas to the Potts model.
Figure 1.7 shows some realisations from the model on a 100 × 100 lattice
with nc = 4 for various β. We see the close resemblance to realisations from
the Ising model, although the samples are rather more “patchy” as there
are more colours present.

1.3.5 Simulation from the posterior

The posterior summarises knowledge of the true image based on our prior
knowledge and the observed data. Hence, if we can provide samples from
the posterior, they can be used to make inference about the true scene. We
can now easily modify Algorithm 2 to account for observed data. The only
change is to add the contribution from the likelihood. The convergence for
this simple MCMC algorithm is, in most cases, quite good; the effect of
long interactions from the prior when β is large, is reduced by the presence
of the observations and so phase transition does not occur for the posterior
(in most cases).

Algorithm 3 A Metropolis sampler for the noisy Ising model

Initialise x

Read data y and noise-parameters
for t = 1 to niter do

for j = 1 to n do
i =NextSite(j)
x′i = 1 − xi

d = β
∑

j∼i I[xi=xj ] + hi(xi, yi)
d′ = β

∑
j∼i I[x′

i
=xj ] + hi(x

′
i, yi)

U ∼ Uniform(0, 1)
p = exp(min(d′ − d, 0))
if U < p then
xi = x′i

end if
end for

end for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 1.6. Simulation from the Ising model: (a) β = 0.3; (b) β = 0.4; (c)
β = 0.5; (d) β = 0.6; (e) β = 0.7; (f) β = 0.8; (g) β = 0.9; (h) β = 1.0; (i)
β = 1.1; (j) β = 1.3.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1.7. Realisations from the Potts-model with four colours on a 100×100
lattice: (a) β = 0.7; (b) β = 0.8; (c) β = 0.9; (d) β = 1.0; (e) β = 1.1; (f) β = 1.2.
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1.4 Image estimators and the treatment of
parameters

In this section, we consider issues of inference for image functionals, for
images themselves and for the associated model parameters.

1.4.1 Image functionals

In some cases, it is not the image as a picture which is of primary concern,
but rather some quantitative information carried by the image, for example
the typical size of a cell, or the proportion of land used for growing a
particular crop. It is usually possible to express such attributes as a function
of x, say g(x). Finding posterior summaries of g(x) is then recognisable as
a fairly common problem in Bayesian statistics, with the most commonly
used estimator being the posterior mean Ex|yg(x). Generally, of course,
this expectation will be analytically intractable, and a run of MCMC must
be used to approximate it by the usual ergodic average. This does at least
have the advantage that other posterior summaries can be extracted in the
course of the computation, for example credible intervals. It is perhaps this
ability to get a handle on the uncertainty in imaging problems which may
justify the use of computationally expensive Bayesian methods as opposed
to the many other cheaper algorithms developed in the computer vision
world.

1.4.2 Image estimation

For many types of images, particularly binary images, the use of posterior
means as a summary does not provide sensible solutions; for that rea-
son, we now consider the range of possibilities available. In the Bayesian
framework, estimation is based upon the specification of appropriate loss
functions (negative utility), for which we then derive the corresponding
optimal estimators. Of course the posterior mean is an example of this,
corresponding to the squared loss function. One interpretation of the loss
function, in this context, is to consider it as a measure of distance between
a true image x and an estimate z. We are trying to capture the notion
of how wrong we are if we mistakenly use z rather than the correct x.
Suppose we can find such a measure of distance, L(x, z), which defines
numerically how close the two images are. It is more important that this
L provides a reasonable measure of distance, rather than strictly satisfying
the axioms of a metric (namely, L(x, z) = L(z,x) ≥ 0 with equality iff
z = x, and that L(x, z) ≤ L(x,u) + L(u, z)). Suppose we were to evalu-
ate how close an estimate z is to the image x by using L(x, z). Different
estimates could then be compared, and as an estimate z′ is better than
z′′ if L(x, z′) < L(x, z′′). Although this is feasible when we are using a
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known test image x, the basic concept still applies when x is unknown and
we have available its posterior distribution. We can define the posterior
expected distance between any estimate z and the unknown x, as

Ex|yL(x, z) =
∑

x

π(x | y)L(x, z). (1.28)

We define the optimal Bayes estimate as the configuration minimising
(1.28),

x̂ = arg min
z

Ex|yL(x, z). (1.29)

Although the general setup is straightforward, the practical implementation
of these ideas is not trivial for two main reasons:

1. How should we construct a distance measure which conforms to our
visual perception of how close two binary images are. Suppose there
are four discrepant pixels, then the location of these pixels really mat-
ters! For example, if they are clumped, they may be misinterpreted
as a feature. Ideally, a distance measure should take into account the
spatial distribution of the errors as well as their number.

2. Assume we have a distance measure, how can we obtain the optimal
Bayes estimate in practise, i.e. solve (1.29)?

To get some feeling as to how certain loss functions behave, consider the
error vector e, where ei = I[xi 6=zi]. We can expand any loss function based
on a difference between images using a binary expansion

L(e) = a0 − a1

∑

i

(1 − ei) − a2

∑

i<j

(1 − ei)(1 − ej)

− a3

∑

i<j<k

(1 − ei)(1 − ej)(1 − ek)

− . . .− an(1 − e1)(1 − e2) · · · (1 − en−1)(1 − en) (1.30)

where for simplicity we have assumed that the constants (a0, . . . , an) de-
pend only on the number of sites considered in each term, and the a0 term
is usually selected such that L(0) = 0. We see that each summand is either
1 if there are no errors in the terms concerned, or 0 if there is at least
one error. Two common image estimators are Marginal Posterior Modes
(MPM) and Maximum A Posteriori (MAP) which correspond to a loss
function which counts the number of pixel misclassifications and to a loss
function which is zero if there is no error and is one otherwise, respectively:

LMPM(e) =

n∑

i=1

ei, (1.31)
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and

LMAP(e) = 1 −
n∏

i=1

(1 − ei). (1.32)

Note that these choices corresponds to two extremes, namely that the non
zero a values for MPM are a0 = n, a1 = 1, and for MAP a0 = 1 and
an = 1.

The MPM estimator

The loss function in (1.31) simply counts the number of errors, so the corre-
sponding optimal Bayes estimate will be optimal in the sense of minimising
the number of misclassifications. There is no extra penalty if the errors are
clustered together as opposed to being scattered around, and in this sense
the estimator is quite local. To obtain the estimate, we first compute the
expected loss

Ex|y

∑

i

ei =
∑

i

Exi|yei =
∑

i

Prob(xi 6= zi | y),

= constant −
∑

i

Prob(xi = zi | y), (1.33)

hence by definition,

xMPM = argmin
z

{
−
∑

i

Prob(xi = zi | y)

)

=
∑

i

arg max
zi

Prob(xi = zi | y). (1.34)

So the ith component of xMPM is the modal value of the posterior marginal.
In our case, it is simply

xMPM,i =

{
1, if Prob(xi = 1 | y) > 1/2
0, if Prob(xi = 1 | y) ≤ 1/2.

(1.35)

To compute an estimate of xMPM, we can useN samples from the posterior,
and if the number of times xi is equal to 1 is greater or equal to N/2, then
x̂MPM,i = 1, else it is 0.

The MAP estimator

The zero-one loss function (1.32) giving rise to the MAP estimate is quite
extreme; any image not matching x is as wrong as any other, independent of
how many errors there are. As is well known for the zero-one loss function,
the estimator is xMAP, which yields

xMAP = arg max
z

π(z | y), (1.36)
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ie. the posterior mode. The mode may be an obvious candidate for an
estimator if the posterior is unimodal or has one dominating mode which
also contains essentially all of the probability mass. However, this is not
always the case. Much of the probability mass can be located quite far away
from the mode, which makes this estimator questionable. One indication
of this happening is when the mode looks quite different from “typical”
realisations from the posterior.

Obviously, one way to try to find the MAP estimate would be to sample
from the posterior, always keeping note of the state seen so far with the
highest posterior probability. However, this is likely to be a highly inefficient
strategy, and instead we next consider two alternatives, one stochastic and
the other deterministic.

Algorithms for finding the MAP estimate

One algorithm which is known to converge to the MAP estimate, at least in
theory, is simulated annealing , cf. Section 1.5.4. The basic idea is as follows:
Suppose π(x) is the distribution of interest and let x∗ be the unknown
mode. It would clearly be a slow and inefficient approach to search for x∗

simply by sampling from π(x), but the search could be made more efficient
if we instead sample from πT (x) ∝ π(x)1/T for small values of T , known
as the temperature, 0 < T � 1. Note that πT (x) has the same mode for
all 0 < T < ∞, and as T → 0 will have most of its probability mass on
this mode. The fact that we do not know the normalising constant as a
function of temperature will not be important as we will use MCMC. So
if we were to chose T = 0+ and construct a MCMC algorithm to sample
from πT (x), a sample would most likely be the mode and the problem
is apparently solved! The catch is of course that the smaller T gets, the
harder it is for an MCMC algorithm to mix and produce samples from
πT (x), rather than getting trapped at a local mode of the posterior. So, the
following trick is used: At iteration t, the target distribution is π(x)1/T (t),
where T (t) is the temperature which varies with time (hence, we have a
non-homogeneous Markov chain). The temperature schedule is decreasing
in such a way that T (t) ≤ T (t′) if t ≥ t′, and T (t) → 0 as t → ∞. If
we decrease the temperature slowly enough, then hopefully the MCMC
algorithm will reach the global mode. Theoretical analysis of the algorithm
clarifies what is required of the speed of the temperature schedule. We have
to lower the temperature not faster than

T (t) = C/ log(t+ 1) (1.37)

where C is a constant depending on π(x). Hence, the time it takes to reach
T = ε, is at least

t = exp(C/ε) − 1 (1.38)

which quickly tends to infinity as ε tends to zero. In other words, the
required schedule is not implementable in practise. Stander & Silverman
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(1994) give some recommendations for schedules which perform well in
finite time.

From a computational point of view, simulated annealing is easy to im-
plement if one already has an MCMC algorithm to sample from π(x). Note
that if logπ(x) = −U(x) + constant, then

π(x)1/T (t) ∝ exp

(
− 1

T (t)
U(x)

)
, (1.39)

so the effect of the temperature is simply a scaling of U(x). In Algorithm 4
we have implemented simulated annealing using Algorithm 3. The user has
to provide the “temperature” function, which returns the temperature as a
function of the time. We chose niter to be finite and lower the temperature
faster than (1.37), for example as

T (t) = T0 × ηt−1 (1.40)

where T0 = 4 and η = 0.999. T0, η and niter should be chosen to reach a
predefined low temperature in niter iterations. Note that we may also keep
track of which configuration that has highest probability of those visited
so far, and return that configuration as the final output.

Algorithm 4 The Simulated Annealing algorithm for the noisy Ising model

Initialise x, set T = T0.
Read data y and noise parameters
for t = 1 to niter do

for j = 1 to n do
i =NextSite(j)
x′i = 1 − xi

d = β
∑

j∼i I[xi=xj ] + hi(xi, yi)
d′ = β

∑
j∼i I[x′

i
=xj ] + hi(x

′
i, yi)

U ∼ Uniform(0, 1)
p = exp(min(d′ − d, 0)/T )
if U < p then
xi = x′i

end if
end for
T = Temperature(t)

end for
return x

Besag (1986) introduced the method of Iterated conditional modes (ICM)
as a computationally cheaper alternative to simulated annealing. (There are
also arguments for considering ICM as an estimator on its own.) It is equiv-
alent to using simulated annealing at temperature zero taking the Gibbs
sampler as the MCMC component. At each iteration, the most likely value
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for each pixel is chosen in turn, conditional on the current values of all the
others. By considering the expression π(x|y) = π(xi|x−i,y)π(x−i|y), it is
clear that each iteration increases the posterior probability until the algo-
rithm reaches a mode, most likely a local mode. The algorithm converges
fast in general, but can be very sensitive to the choice of starting point.

Finally, for the Ising model, an algorithm for locating the mode exactly
exists (Greig, Porteous & Scheult 1989). The algorithm is rather technical,
and not extendable beyond the Ising model, and so we do not present it
here.

Examples

We will now show some estimated MPM and MAP estimates based on
Figure 1.5e and f, Gaussian noise with σ2 = 0.5 and flip noise with p =
0.25. We assume the noise parameter to be known, so our only nuisance
parameter is β. It is not that common to estimate β together with x, so
usually the inference for x is based on

π(x | y, β) (1.41)

for a fixed value of β. This is then repeated for a range of β values, and the
value producing the “best” estimate is then selected. This process clearly
underestimates the uncertainty regarding β, and usually also the uncer-
tainty in other derived statistics from the posterior distribution. We will
later demonstrate how this could be avoided by taking the uncertainty in
β into account.

Figure 1.8 shows the case with Gaussian noise with MAP estimates in
the left column and the MPM estimates in the right column. Similarly
with Figure 1.9, but for the flip noise case. The effect of increasing β is
clear in both sets of figures. Increasing β makes the estimate smoother. In
this instance, there is not much difference between the MAP and MPM
estimates.

1.4.3 Inference for nuisance parameters

We will concentrate on a binary classification model with noisy Gaussian
observations of typical response levels associated with the two states (for
example, our newsprint images degraded by noise). Hence, we now treat
the level of background (µ0) and foreground (µ1) as unknown instead of
being known as 0 and 1. Additionally, the noise variance σ2 is unknown as
well. The posterior then is

π(x | y) ∝ (σ2)−n/2

Z(β)
exp


β

∑

i∼j

I[xi=xj ] −
1

2σ2

∑

i

(yi − µxi
)2


 . (1.42)
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FIGURE 1.8. MAP (left column) and MPM (right column) estimates for various
values of β when the true scene is degraded by Gaussian noise with variance 0.5.
First row: β = 0.3, second row: β = 0.5, third row: β = 0.7, fourth row: β = 0.9,
fifth row: β = 1.3.
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FIGURE 1.9. MAP (left column) and MPM (right column) estimates for various
values of β when the true scene is degraded by flip noise with p = 0.25. First row:
β = 0.3, second row: β = 0.5, third row: β = 0.7, fourth row: β = 0.9, fifth row:
β = 1.3.
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The posterior of interest is leaving us four nuisance parameters to deal
with, β, σ2, µ0, µ1. We will consider likelihood approaches, with and without
training data, as well as a fully Bayesian description.

Likelihood approaches with training data

Suppose we are in the fortunate position where we have a data set y gener-
ated from a known configuration x. In this situation, we could use likelihood
approaches :

(σ̂2, µ̂0, µ̂1) = arg maxπ(y|x;σ2, µ0, µ1) (1.43)

β̂ = argmaxπ(x;β). (1.44)

For the former, it is straightforward to show that

µ̂j =
1

|i : xi = j|
∑

i:xi=j

yi, j = 0, 1 (1.45)

σ̂2 =
1

n

∑

i

(yi − µ̂xi
)2. (1.46)

However for β̂, we have significant difficulties because the normalising con-
stant Z(β) for the prior distribution is not tractable. In addition, we are
in effect attempting to estimate one parameter based on a single “data”
point, x, because although we may have many pixels, and thus consid-
erable information about typical response levels and variance levels, we
only have this single realisation from the process controlled by β. Work-
ing with high-dimensional problems with complex interaction parameters,
this sort of problem arises quite frequently. We describe one possible alter-
native to true maximum likelihood estimation which has been suggested
in this context, maximum pseudo-likelihood : Consider factorising the joint
distribution π(x|β)

π(x | β) = π(x1 | x2, . . . , xn, β)π(x2 | x3, . . . , xn, β) . . . π(xn | β) (1.47)

Despite the Markov structure, the terms on the right-hand side above be-
come increasingly difficult to compute. The idea behind pseudo-likelihood
is to replace each of the terms π(xi|xi+1, . . . , xn, β) by the complete condi-
tional π(xi|x−i, β) which by the Markov property is π(xi|x∂i, β). So

PSL(β) =

n∏

i=1

π(xi|x∂i, β). (1.48)

It should be noted that this is not a likelihood except in the case of no
dependence, that is when π(xi|x∂i) = π(xi). The benefit of this approach
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is that these conditional probabilities are particularly easy to express for
the Ising model:

π(xi | x∂i, β) =


1 + exp(−β

∑

j∈∂i

(I[xi=xj ] − I[xi 6=xj ]))




−1

. (1.49)

This function is easily calculated for a given x, and so we can write down
the pseudo-likelihood function. Maximisation of the function over β will
have to be numerical. Obviously the higher the true value of β, the worse
the estimates, since we ignore the true dependence structure.

Likelihood approaches without training data

It is more typically the case that we do not have training data either for
the likelihood or the prior parameters; it is then hard to implement the
approaches described in the previous section exactly. One commonly used
approach is to alternate iterations of whichever updating scheme is being
used for x using the current parameter estimates, with steps which update
the current parameter estimates treating the current x as if it were a known
ground-truth. See, for example, Besag (1986).

Fully Bayesian approach

The obvious alternative to an approach which fixes the parameters at some
estimated value, is to treat them as hyperparameters in a fully Bayesian ap-
proach. That is we treat σ2, {µi}, β as variables, specify prior distributions
for them and work with the full posterior

π(x, σ2, {µi}, β | y) ∝ π(y | x, σ2, {µi}, β)π(x, σ2, {µi}, β) (1.50)

∝ π(y | x, σ2, {µi})π(x | β)π(σ2)π(µ0)π(µ1)π(β)

where we assume independent priors for each parameter. If we have no
additional prior information about any of the parameters, then common
choices of priors are the following (for a data set where the recorded values
are in the set {0, . . . , 28 − 1}, the priors for the means have been restricted
to [0, 255]), where 1/σ2 has been reparameterised as τ

τ ∼ exp(1)

µ0 ∼ Uniform(0, 255)

µ1 ∼ Uniform(0, 255)

β ∼ Uniform(0, βmax) where say βmax = 2. (1.51)
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For the purposes of sampling, we will most likely need to know the condi-
tional distributions of each of the parameters:

π(τ | · · · ) ∝ (τ)n/2 exp

(
−τ(1 + 1/2

∑

i

(yi − µxi
)2)

)

π(µi | · · · ) ∝ exp


−τ/2

∑

j:xj=i

(yj − µi)
2


 I[0<µi<255], i = 0, 1

π(β | · · · ) ∝ 1

Z(β)
exp


β

∑

i∼j

I[xi=xj ]


 I[0<β<βmax]. (1.52)

The first of these conditionals is recognisable as a gamma distribution with
parameters (n/2 + 1) and (1 + 1/2

∑
i(yi − µxi

)2)−1, and as such would
lend itself well to the Gibbs sampler. Notice that the conditional mean is
quite closely related to the maximum likelihood estimate of τ . The con-
ditionals for the two mean level parameters are recognisable as truncated
Gaussians; again notice that the conditional mean is closely related to the
maximum likelihood estimate. In this case, a Metropolis algorithm could
be used, perhaps taking the untruncated Gaussian as the proposal density.
Only the conditional for β is not recognisable as being related to a standard
distribution. This suggests using some form of Metropolis-Hastings algo-
rithm for sampling. However, once again we run into difficulties because of
the intractability of the normalising constant Z(β); in order to implement
a Metropolis-Hastings algorithm here, we would need to be able to evaluate
values of Z at different values of β. We now describe one approach to this
problem.

Estimating Z(β)/Z(β′)

Recall that Z(β) is defined by

Z(β) =
∑

x

exp (βS(x)) (1.53)

where S(x) is the sufficient statistic
∑

i∼j I[xi=xj ]. One possibility is to see
whether the derivative of Z(β) with respect to β is easier to estimate than
Z(β) itself.

dZ(β)

dβ
=

∑

x

S(x) exp (βS(x))

= Z(β)
∑

x

(S(x)) exp (βS(x)) /Z(β)

= Z(β) Ex|βS(x). (1.54)
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By solving this differential equation, we obtain that

log (Z(β′)/Z(β)) =

∫ β′

β

E
x|β̃S(x) dβ̃, (1.55)

see also Sections 1.5.4, 1.7.2 and 4.7.4. As we see, this trick has reduced the
difficulty of the problem to one we can tackle using the following procedure:

1. Estimate
Ex|βS(x) (1.56)

for a range of various β values using posterior mean estimates based
on the output from a sequence of MCMC algorithms. (These values
will depend on the image size and so will need to be recalculated for
each new problem, although a proper rescaling to account for (not
too different) dimensions will do fine.)

2. Construct a smoothing spline f(β) to smooth the estimated values of
Ex|βS(x).

3. Use numerical or analytical integration of f(β) to compute an esti-
mate of (1.55),

̂log (Z(β′)/Z(β)) =

∫ β′

β

f(β̃) dβ̃ (1.57)

for each pair (β, β′) required.

Example

Let us now apply the fully Bayesian approach to the same examples as
in Section 1.4.2. Our first task is to estimate (1.56) to compute f(β) for
evaluating the normalising constant: We ran Algorithm 2 using 3, 000 it-
erations after burn-in, for values of β from 0 to 1.5 in steps of 0.01. We
then estimated the smooth curve f(β) using a local polynomial smoother
to reduce the noise and to compute interpolated values on a fine grid, as
shown in Figure 1.10. The computation of (1.57) is then trivial.

Recall that Algorithm 2, which was use to estimate Figure 1.10, has
severe mixing problems for high βs due to the invariance when flipping
colours. How does this effect the estimated curve in Figure 1.10? In fact
very little, as the contribution to the normalising constant from each of the
two modes is the same. We might expect small errors at and around the
critical β, from the contribution from all the “intermediate” configurations.
These may not be properly explored by Algorithm 2. However, a careful re-
estimation of Figure 1.10 using the Swendsen-Wang algorithm, which does
not suffer from such mixing problems, gave an indistinguishable estimate
even at and around βcritical.
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FIGURE 1.10. Estimated f(β) for the Ising model using Algorithm 2.

We now need to extend Algorithm 3 to include a move changing β. We
adopt a simple Metropolis strategy, and propose a new value β ′ by

β′ = β + Uniform(−h, h) (1.58)

where h is a small constant, in the order of h = 0.025 or so. The corre-
sponding acceptance probability becomes

α(β, β′) = min

{
1,

exp(β′S(x) +
∑

i hi(xi, yi))

exp(βS(x) +
∑

i hi(xi, yi))
× Z(β)

Z(β′)
× π(β′)

π(β)

}

= min

{
1, exp

[
S(x)(β′ − β) − log

(
Z(β′)

Z(β)

)]
π(β′)

π(β)

}
(1.59)

where π(β) is the prior for β. Note that as β′ − β → dβ, the exponential
term in (1.59) reduces to

exp
(
dβ(S(x) − Ex|βS(x))

)
, (1.60)

and so we see that β will tend to vary around the maximum likelihood
estimate, S(x) = Ex|βS(x), for β given x, but with the added variability
coming from x itself being unknown.

The extended sample is then run for 2 500 iterations after burn-in for the
same two noisy data sets as in Figures 1.8 and 1.9. As is clear from (1.60),
the value of β is determined only by x and not by the data themselves,
so by looking at Figure 1.9 and Figure 1.8, we see that the “effective”
noise level is slightly higher for the flip noise case, and the estimates of the
true scene are slightly more noisy. Hence, it is expected that β in the flip
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FIGURE 1.11. Figure (a) shows 2 500 values of β from the MCMC algorithm 3
and (c) the density estimate, for Gaussian noise with σ2 = 0.5. Figures (b) and
(d) are similar, but for flip noise with p = 0.25.

(a) (b)

FIGURE 1.12. Posterior marginal mode estimates of the true scene with the fully
Bayesian approach: (a) Gaussian noise with σ2 = 0.5; (b) flip noise with p = 0.25.

noise case is slightly lower than in the Gaussian case. Figure 1.11 shows
the trace plot of β and its density estimate using a kernel method, for the
Gaussian case on the left, the flip noise case on the right. In both cases β
varies around 0.8 − 0.85, which is just below the critical value 0.88. The
uncertainty in β might seem high for such a large data set, but in effect we
have only one relevant piece of data (the whole image). Figure 1.12 shows
the corresponding MPM estimates, which seem reasonable.

1.5 Grey-level images

In this section, we remain with pixel-based image models, but widen the
range of application. We turn our attention to images which are piecewise
smooth, consisting of smooth regions separated by edges (where we will be
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rather more precise about what we mean by smooth later on). Such images
might arise in the context of any type of imaging device which records on
an intensity scale and where, unlike for categorical image data, the order
of these values is of interest per se.

1.5.1 Prior models

Whereas models for binary and categorical data tend to penalise any dis-
crepancy between neighbouring pixel values, here it will be more appropri-
ate to penalise large discrepancies more heavily than small ones. We will
consider MRF prior distributions of the form π(x) ∝ exp(−Φ(x)), where

Φ(x) = β
∑

C∈C

wCφ (DC(x)) , (1.61)

φ is a real function, the wCs are positive weights, β is a positive scaling
parameter, and the functions DC(x) are discrete approximations to some
order of x derivative at clique C. This choice of order of derivative is one
way in which to control the order of smoothness desired; penalising differ-
ences in first order derivative will favour constant regions, penalising second
order derivatives will favour planar regions, and so on. The DC ’s are taken
to be discrete difference operators corresponding to approximations of first-
and second-order derivatives, so for example an approximation to a first
order derivative in the grey-level is simply the difference between values
at neighbouring pixels. An approximation to the second order derivative
is the difference in differences, and so on. The weights wCs are used to
accommodate the differences in distance between diagonal and vertical or
horizontal sites, assuming a neighbourhood structure larger than simply
the four nearest neighbours is used.

Using the above formulation, we can write the unnormalised negative log
prior as

Φ(x) = β

M∑

m=1

wm

∑

i

φ
(
D

(m)
i x

)
, (1.62)

where D
(m)
i x is the m-th discrete derivative of x at position i, e.g. D

(1)
i x =

(xi+1 − xi)/δ, where δ is a scaling parameter. The choice of the potential
function φ has implications for the properties of the system. It is natural to
assume φ to be symmetric, so that positive and negative gradients of equal
magnitude are penalised equally, but what other properties do we desire?
One particular and important possibility for φ is the quadratic potential
φ(u) = u2 which leads to a Gaussian prior, and, combined with a Gaus-
sian likelihood, an unimodal posterior distribution. This of course simplifies
sampling; Gaussian models can be efficiently sampled using sparse matrix
methods (Rue 2001), or fast Fourier transforms in the special case of homo-
geneous likelihood and toroidal boundary conditions (Wood & Chan 1994).
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However, this choice of φ is not suited for estimation of piecewise constant
or planar fields because the rapid growth as u→ ∞ severely penalises the
intensity jumps which may occur across edges. In addition, the slow varia-
tion around the origin might cause excessive smoothing and interpolation.
So, ideally we would also like to be able to detect changes between smooth
regions. The choice of potential functions for edge-preserving restoration is
widely discussed in the literature. We will here consider such implicit edge-
preserving models; alternatives are to model the edges explicitly using dis-
crete line processes (Geman & Geman 1984) or to use deformable templates
which act on region descriptions directly (Grenander & Miller 1994).

We will largely follow Geman & Yang (1995) and consider potential func-
tions in the class of continuous (but not necessary derivative) functions

E =
{
φ(·) ∈ C(0)(R) | φ(0) = 0, φ(u) = φ(−u),

lim
u→∞

φ(u) <∞,
dφ

du
≥ 0, u ∈ R+

}
. (1.63)

The arguments in favour of this class of models are largely based on heuris-
tics, but it is clear that the finite limit and slow growth for large u ensure
that intensity jumps over edges are not too severely penalised. The following
example, taken from Blake & Zisserman (1987), shows that using potential
functions in E has links to both line processes and robust inference.

Example 1 Let u be a Markov random field with neighbourhood relation
∼, and define the line process

lij =

{
1 ∃ edge between ui and uj

0 otherwise.

Furthermore, define the negative log prior

Φ(u, l) =
∑

i∼j

(
(ui − uj)

2 − 1
)
(1 − lij)

smoothing within the disjoint regions defined by the line process l. Then
Blake & Zisserman (1987) observed that

inf
l

Φ(u, l) =
∑

i∼j

(
(ui − uj)

2 − 1
)
I[(ui−uj)2<1]

=
∑

i∼j

(
(ui − uj)

2 − 1
)−

= Φ∗(u),

where x− = min(x, 0). Thus infu inf l Φ(u, l) = infu Φ∗(u) and, in terms of
modal behaviour, there is no need to model the edges explicitly, and thus
instead use the truncated quadratic.
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In addition to the behaviour as u grows large, the behaviour around the
origin is important. Charbonnier, Blanc-Feraud, Aubert & Barlaud (1997)
advocate strictly concave functions, such as

φ(u) =
−1

1 + |u| , φ(u) =
|u|

1 + |u| , (1.64)

basing their argument on consideration of coordinate-wise minima (that
is, a change in the value of any single pixel, results in an increase in the
negative log prior). Let x∗ be a coordinate-wise minimum and consider a
small perturbation x∗i + tu toward the data yi. This will lead to a decrease
of order tu in the likelihood component, but an increase in the prior energy
since φ′(0+) > 0. By appropriately choosing the scaling parameter β the
combined effect will very likely be an increase of the posterior distribution.
This is in contrast to the case where φ′(0) = 0, where there will be in-
terpolation. (As an aside, note that it is generally difficult to say as much
about the choice of φ when we consider estimators such as the posterior
mean, since we then need to consider distributional properties rather than
just the mode). Some potentials which have been used in the literature are
given below.

Potential function Reference

min(1, u2) Blake & Zisserman (1987)
u2/(1 + u2) Geman & McClure (1987)
log coshu Green (1990)
log(1 + u2) Hebert & Leahy (1989)

2
√

1 + u2 − 2 Charbonnier (1994)

TABLE 1.1. Some edge preserving potentials

1.5.2 Likelihood models

Generally speaking, continuous likelihood models for grey-level images and
binary images are not so different. However, at this stage we will intro-
duce one further aspect to the image degradation model, which is blurring .
Blurring occurs when for some reason, which might be motion or perhaps
a defect in the imaging device, spatial resolution is lost so that the value
recorded at site i is actually a convolution of x values in a region around
i. Denote this convolution by z, then

zi = (h ∗ x)i =
∑

j

hjxi−j (1.65)

where the kernel h is called a point spread function (psf). The components
of h often sum to 1, and in most cases, hj has its largest value at j = 0. If



1. A Tutorial on Image Analysis 35

FIGURE 1.13. Examples of two types of blurring; (left) motion blur, (right)
out-of-focus blur.

we have an additive noise structure, then the data y = z + ε. It is possible
to show that the posterior remain a Markov random field with an enlarged
neighbourhood structure.

As an example of the visual effect of blurring, Figure 1.13 simulates the
effects either of constant relative motion of object and recording device or of
a picture taken out of focus. The corresponding ideal point spread functions
are a line of uniform weights for the motion blur, and for the out-of-focus
case, radially symmetric weights defined over a pixel approximation to a
circular disc.

1.5.3 Example

We end with a simulated example performing restoration of confocal mi-
croscopy images of human melanoma cancer cells. One such image is shown
in Figure 1.14a. The true image x is degraded by blurring with a Gaussian
kernel h with standard deviation of 3 pixels, and adding independent zero
mean Gaussian noise with σ = 15. The resulting image y is shown in Fig-
ure 1.14b. The true image is divided into piecewise smooth regions, so it
makes sense to use the edge preserving prior (1.62) for recovering the edges
in the image. Obviously it should be possible to use single site MCMC al-
gorithms here. However, because of the non-convexity of the prior and the
long-range spatial interactions introduced by the point spread function h,
such standard samplers will converge very slowly for this model. Experience
shows that updating all or parts of the variables jointly in blocks will lead
to improved mixing, but for the present model, block sampling is only pos-
sible after reformulating the model using an idea in Geman & Yang (1995),

which we present here. Introduce M auxiliary arrays b = (b(1), . . . , b(M)),
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and define a distribution π∗ with distribution

π∗(x, b) ∝ exp

(
−β

M∑

m=1

wm

∑

s∈S

(
1

2

(
D(m)

s x − b(m)
s

)2

+ ψ(b(m)
s )

))
,

(1.66)
where the function ψ(·) is related to φ by the identity

φ(u) = − log

∫
exp(−1/2(u− v)2 − ψ(v)) dv. (1.67)

Then it is easy to show that

π(x) =

∫
π∗(x, b) db, (1.68)

which means that we can use π∗ to estimate the posterior mean of x under
π. The motivation for this is that under the so called dual model π∗, x is
Gaussian conditional on the data y and the auxiliary array b. Let D(m)

be matrices representing the difference operators {D(m)
s }, and let DT =

(D(1)T , . . . ,D(M)T ). Furthermore, define W = diag(ω1, . . . , ωM )⊗In, and
let H be a matrix representing the point spread function h. Then the full
conditional distribution for the true image x has distribution

π∗(x | y, b) ∝ exp

(
−1

2
xT

(
βDT WD +

1

σ2
HT H

)
x + bT WDx

)
,

(1.69)
which is a Gaussian Markov random field with inverse covariance matrix
Q = βDT WD+σ−2HT H and mean vector µT = bT WD Q−1. Assuming
toroidal boundary conditions x can be sampled very efficiently using fast
Fourier transforms as detailed in Geman & Yang (1995). In the general sit-
uation one can use Cholesky decompositions and sparse matrix methods as
in Rue (2001). The components of the auxiliary array b are conditionally in-
dependent given x, and can be sampled using e.g. the Metropolis-Hastings
algorithm or rejection sampling.

Figure 1.14c shows a posterior mean estimate of the cell image based
on 1000 iterations of the block sampler with parameters β = 200, δ = 50,
and ψ(u) = |u|/(1 + |u|). Visually the restoration is quite close to the
original image, although some smoothing has taken place. The results were
similar for a wide range of parameters, with smaller values of the ratio
β/δ2 leading to smoother images. Since the truth is known, a qualitative
comparison between the restoration and the true image can be made. Figure
1.14d plots the double integral distance (Friel & Molchanov 1998) between
the Markov chain samples and the true image Figure 1.14a. A constant
image was used as an initial point, but the sampler seems to reach a stable
state very quickly. Experiments indicate that the convergence is much faster
than for the single site sampler, so the dual model formulation combined
with a good block sampling algorithm seems well suited for recovering
discontinuities in smooth images.



1. A Tutorial on Image Analysis 37

(a)

(b)

(c)

0 100 200 300 400 500 600 700 800 900 1000
2600

2700

2800

2900

3000

3100

3200

(d)

FIGURE 1.14. (a) Confocal microscopy image of a human melanoma cancer cell;
(b) data simulated by blurring and adding Gaussian noise; (c) restoration of the
image using the Geman & Yang model and the GMRF algorithm of Rue (2001);
(d) trace plot of the double integral distance between the true image and the
Markov chain samples.
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1.6 High-level imaging

We now turn our attention to a completely different class of image repre-
sentations and models, motivated by some of the tasks for which Markov
random field representations may be inadequate. For example, suppose we
are trying to identify and measure an unknown number of cells viewed un-
der a microscope. There may be variations in the size and shape of cells,
and there may even be more than one type of cell. Typical tasks might be
to label the identified cell and perhaps to identify their shape characteris-
tics, or simply to count them. A pixel-based description of the underlying
x may not be the most effective one in this context for a number of rea-
sons. Firstly, using a pixel grid, we will be “building” cells out of square
building blocks. Second, if we are then trying to identify cells and we see a
conglomeration of “cell” pixels, how do we know whether this is one cells
or several, i.e. what constitutes a cell in terms of pixels? Third, how do
we incorporate any prior information which we have about size or shape
information? For problems of this sort, we may have to turn to high-level
modelling.

There are various approaches to high-level modelling, mainly based on
looking at the range of variation of some prototypical version of the ob-
ject(s) under study (prototypical in terms of shape and/or other informa-
tion such as grey-level). We will concentrate on a subset of approaches,
those based on deformations of polygonal templates for objects.

1.6.1 Polygonal models

Considering our cell example above, one possible way to describe the mi-
croscope data (or at least that which is relevant to our purposes) would be
to use a representation

x = {Cell1,Cell2, . . . ,Cellk} (1.70)

where k itself may be unknown, and each Celli is a collection of information
sufficient to locate and label that particular cell. One way to achieve this is
to use a marked point process (see also Chapter 4) as a prior with the model
for a random configuration of objects built around a stochastic template
model for a single object embedded in a mixture model of different object
types which is used as the mark distribution of a marked point process
model. We begin, in this section, by describing the polygonal model for the
outline of an object. We will describe the embedding into a point process
to handle an unknown number of objects later.

The prototypical object is described by an n–sided template defined by
a set of vectors g0, g1, . . . , gn−1 which give the edges of the polygon, see
Figure 1.15. For example, if one type of object is characteristically circular,
then these edges describe a polygonal approximation to a circle. The closure
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FIGURE 1.15. The left figure shows an undeformed square template. The right
figures shows a deformed template holding the location c fixed.

of the polygonal template is equivalent to the condition that
∑n−1

i=0 gi = 0.
Described in this way, the template does not have any location information,
and so we will consider its first vertex to be located at the origin, the
second to be located at g0, the third at g0 + g1 and so on. It is possible to
accommodate scaling and rotational effects , the template may be globally
scaled by a scalar R and rotated through an angle α; however we shall
ignore this in this exposition. To model natural shape variability occurring
between objects of the same type, each edge gi is subject to a stochastic
deformation which incorporates an edge–specific Gaussian deformation in
length and direction. This edge-specific effect describes the change in length
and direction between the undeformed gi and the new edge. Writing the
deformed edge as sigi where si is the 2 × 2 matrix representing these
changes, we thus have

sigi − gi = ri

[
cos θi sin θi

− sin θi cos θi

]
gi. (1.71)

Writing t
(0)
i = ri cos(θi) and t

(1)
i = ri sin(θi), determines that

si =

[
1 + t

(0)
i t

(1)
i

−t(1)i 1 + t
(0)
i

]
. (1.72)

Specifying the distribution of ri and θi to be the angular and radial com-

ponents of a bivariate Gaussian with zero correlation, then t
(0)
i and t

(1)
i are

independent Gaussians with mean zero. Ignoring for a moment the con-
straint that the deformed template must be closed, i.e.

∑n−1
i=0 sigi = 0,

Grenander, Chow & Keenan (1991) suggest a first order cyclic Markov

structure on the {t(0)i } and the {t(1)i } independently with each having an
n–dimensional Gaussian distribution with mean 0 and circulant inverse
covariance matrix

Σ−1 =




β δ δ
δ β δ

δ β δ
. . .

. . .
. . .

δ β δ
δ δ β




, (1.73)
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where all other entries are zero. We will in Section 1.7 use the second order
model in (1.89), but we use the first order model in this section to avoid
unnecessary details.

Define the length 2n vector t = (t
(0)
0 , t

(0)
1 , . . . , t

(0)
n−1, t

(1)
0 , . . . , t

(1)
n−1)

T then,
still considering only the unconstrained non-closed polygon case

t ∼ N2n

(
0,

[
Σ 0
0 Σ

] )
. (1.74)

Imposing the closure constraint on the deformed template will destroy the
simple structure of (1.74). However, for the purposes of simulation, which
will of course require MCMC methods, the unconstrained density suffices
because in the acceptance ratio all we will need to evaluate is the ratio of
the constrained density at two values of x. Since the closure constraint is
linear in x, the ratio of the constrained densities is also the ratio of the
unconstrained densities at the same x values.

1.6.2 Simulation

Simulation from the prior is straight forward as the joint density for the
deformations are joint Gaussian and so also with the constrained density
as the constraints are linear. Figure 1.16 shows some realisations from the
second order model in (1.89) which we will use later in Section 1.7, for
various parameter-setting. As we see, the samples mimic quite well circular-
like objects.

κ=200κ=100κ=50

κ/η=150e+04

κ/η=25e+04

κ/η=1e+04

FIGURE 1.16. Samples for the edge transformation template model with preci-
sion matrix (1.89), and with different values of the parameters κ and η.

Simulation from the posterior usually requires an MCMC approach. Con-
sider the square template shown in Figure 1.17c. We will use this template
in locating the object observed in the data shown in Figure 1.17b. These
data have been generated from the underlying pixellated image x in Figure
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1.17a by setting the black background pixels to have value µ0 = 0 and the
white foreground pixels to have value µ1 = 1. Pixel-wise independent zero
mean Gaussian noise with variance σ2 = 0.52 has then been added. Using
a uniform prior density for location c, and the model for the deformations
s described previously conditioned on the closure of the polygon, together
with the likelihood L(y |s, c), the posterior density for c and s becomes

π(s, c | y) ∝ π(s)
∏

i∈I

exp

(
− 1

2σ2
(yi − µ(i; s, c))2

)
, (1.75)

where µ(i; s, c) is equal to µ1 if pixel i is inside the deformed template, and
equal to µ0 if it is outside.

There are various ways in which we can propose a change to the current
realisation of x = {c, s}. Proposing a change in c alters the location of
the current polygon without altering its shape; in the early stages if the
object is not well located, moves of this type are quite useful. By proposing
symmetric changes in c, the acceptance ratio will depend only on the likeli-
hood ratio of the new and old states. How can the shape of the polygon be
changed? Proposed changes can be made either by altering s itself, or by
altering the position of one or more of the vertices directly. Notice that the
vertex locations can be written as a one-to-one linear transformation of c
and s (subject to keeping the labelling of the vertices constant). This means
we can propose to move a randomly chosen vertex, perhaps uniformly in
some small disc around its existing value (a symmetric proposal). Because
the transformation from c and s to the vertices is linear, the Jacobian is
a constant, which will therefore cancel in the acceptance ratio. This allows
a fast evaluation of the density π(s) by using its first order Markov prop-
erty. Figure 1.17d shows some samples of the posterior density using the
template in Figure 1.17c.

There are two additional tasks that require our attention working with
polygon models, that is to check if the deformed polygon is simple, and
whether a site is inside or outside the deformed polygon. These tasks are
classical problems in computational geometry , see e.g. O’Rourke (1998) for
solutions and algorithms.

1.6.3 Marked point process priors

Within this framework, each object xi comprises a point which gives lo-
cation (unspecified by the deformation model) and a set of marks which
then specify its other attributes, in this case its outline (Baddeley & Van
Lieshout 1993). The points lie in a window Λ related to the data observa-
tion coordinates, and the marks in the space M associated with the object
shapes. A configuration of objects is described as a finite unordered set
x = {x1, . . . , xk} where x follows an object process, i.e. a marked point
process on Λ × M with a Poisson object process as the basic reference
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(a) (b)

(c) (d)

FIGURE 1.17. (a) The true pixellated image; (b) the data; (c) the square tem-
plate; (d) samples of the deformed template overlaid on the true scene.
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process (see Chapter 4). Under the Poisson process, conditional on the
number of objects k, the objects are uniformly and identically distributed.
The joint density of {x1, . . . , xk} is defined by a density f(x) relative to
the Poisson object process. For example, to model pairwise interactions
between objects which are defined to be neighbours by some relation ∼,
the function

f(x) ∝ γk
∏

i∼j

h(xi, xj), γ > 0, (1.76)

could be used; Van Lieshout (1995) discusses various interaction models.
To model a situation where objects are not allowed to overlap, such as
confocal microscopy where the images are optical sections, all objects are
defined to be neighbours and the interaction function h(xi, xj) is taken to
be zero if objects xi and xj overlap and one otherwise. This model is known
as the hard core object process . We take the point, denoted c, to be the
location of the first vertex for each object. The marks are the deformations
t of the standard template. It is possible to allow objects of different types
by forming a mixture model using different basic templates with different
deformation parameters, where the weights in the mixture model represent
the relative frequencies of occurrence; refer to Rue & Hurn (1999) for de-
tails. This mixture distribution is then used as the mark distribution of the
marked point process model to model an unknown number of objects.

Extending the MCMC algorithm to handle an unknown number of ob-
jects requires modifications to accommodate the dimensionality changes.
Essentially, as well as proposing fixed dimension changes to the current
cells, the method has to allow for births and deaths of cells. A framework
has been provided for this by Geyer & Møller (1994), Green (1995) and
Geyer (1999); see Section 4.7.7. One way to decrease the number of cells
by one is to delete a randomly selected cell. The complimentary move, in-
creasing the number of cells by one, is to propose a new cell by simulating
a location uniformly in the window, and a set of marks at random from
the mixture model of template types. In these move types, it is necessary
to “dimension match” x and x′, including an additional Jacobian term
in the acceptance ratio. Both types of move are required in sampling our
posterior density; moves which keep the dimension of x fixed, for example
altering the location of shape of one of the cells, and moves which alter the
dimension by altering the number of cells.

1.6.4 Parameter estimation

There are clearly some parameters in the deformable template set-up which
are hard to interpret intuitively, in particular β and δ of (1.73). This is a
barrier to their more widespread use in applied work. It would be nice
to be able to treat them in a fully Bayesian manner, so that uncertainty
could be propagated through. Unfortunately, the normalising constants of
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this type of model are extremely complex, and this is likely to preclude
this approach. Instead in this section we will consider maximum likelihood
estimation of β and δ based on recorded vertex information (as could, for
example, be gathered using the mouse on display of training data).

We begin by considering a single object, and transforming from the de-
formation model for the polygon edges to the model for the corresponding
vertex locations. Recall that the first vertex defines the location of the en-
tire polygon; if the first vertex is at location c = v0, then the second vertex
v1 is located at v0 + s0g0 and so on,

vj = v0 +

j∑

i=0

sigi, j = 1, . . . , n.

There are n+ 1 vertices in the non-closed polygon. Considering the x and
y components separately, the vertices can be written




vx
1

vx
2
...
vx

n
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1
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2
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+v̄0

(1.77)
where v̄0 is the vector of vertex x and y positions of the undeformed tem-
plate with first vertex located at v0. We will write (1.77) in the form
v = Gt + v̄0. The distribution of v unconstrained by closure given the
observed v0 is therefore

vT | v0 ∼ N2n

(
v̄0 , G

[
Σ 0
0 Σ

]
GT

)
. (1.78)

To find the constrained distribution of (v1, . . . ,vn−1)
T |(vn = v0), it is

simpler to reorder the components of v from x then y components to the
vertex pairs, rewriting (1.78) as

(v1,v2, . . .vn)T | v0 ∼ N2n

( [
µ1

v0

]
,

[
Σ11 Σ12

ΣT
12 Σ22

])
, (1.79)

where the partitioning of the mean and variance correspond to (1.78) par-
titioned into the sets (v1, . . . ,vn−1)

T and vn. Note that E(vn|v0) = v0 by
closure of the undeformed template. Denote the partitioned inverse of the
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variance matrix

[
Σ11 Σ12

ΣT
12 Σ22

]−1

=

[
Ψ11 Ψ12

ΨT
12 Ψ22

]
. (1.80)

Denote v1, . . . ,vn−1 by v−n, then

π(v−n,vn | v0) =
(2π)−n

|Σ|1/2
exp

(
−1

2

[
v−n − µ1

vn − v0

]T

Σ−1

[
v−n − µ1

vn − v0

])

(1.81)

π(vn | v0) =
(2π)−1

|Σ22|1/2
exp

(
−1

2
[vn − v0]

T
Σ−1

22 [vn − v0]

)
. (1.82)

Then the conditional density of interest is

π(v−n,vn | v0)|vn=v0

π(vn | v0)|vn=v0

= (2π)−(n−1)

( |Σ|
|Σ22|

)−1/2

(1.83)

× exp

(
−1

2
(v−n − µ1)

T Ψ11(v−n − µ1)

)
.

By some manipulation of the variance matrices, this can be seen to be the
density of a N2n−2(µ1,Ψ

−1
11 ). Assuming that v0 is uniformly distributed

in the observation window, and under an assumption of independence of
the polygon shapes, the likelihood for m cells will be the product of these
individual likelihoods. This will have to be maximised numerically.

1.7 An example in ultrasound imaging

In this final section, we present an analysis of a real data set. Our goal
here is to demonstrate how complex tasks can be tackled using techniques
based on the type of ideas presented in the previous sections.

1.7.1 Ultrasound imaging

Ultrasound is widely used in medical settings, mainly because of its ease
of use and its real-time imaging capability. However, the diagnostic qual-
ity of ultrasound images is low due to noise and image artifacts (speckle)
introduced in the imaging process. The principle of ultrasound imaging is
simple: A pulse of ultra-high frequency sound is sent into the body, and the
backscattered return signal is measured after a time delay corresponding
to depth. When the pulse hits a boundary between tissues having different
acoustic impedances, it is partially reflected and partially transmitted. In
addition there is reflection within homogeneous material due to small spa-
tial variations in acoustical impedance, called scatterers. Thus variations in
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acoustic impedance is the basis for identifying regions of interest in the im-
aged tissue. We concentrate on the second mode of variation, called diffuse
scattering, and use a Bayesian model developed in Hokland & Kelly (1996)
and Husby, Lie, Langø, Hokland & Rue (2001). In this model the area Ωi

imaged in pixel i is assumed to consist of a large number of uniformly
distributed scatterers, and the received signal is the sum of the reflections
from all these scatterers. Assuming that all scatterers are independent, and
invoking the central limit theorem, the resulting radio frequency signal xi is
assumed to be a Gaussian random variable with mean zero and a variance
determined by the scattering properties of the tissue in Ωi,

xi | σ2
i ∼ N

(
0, σ2

i

)
, ∀i. (1.84)

It is in other words he variance which characterises the different tissues, and
we can thus segment the image into different tissue types by identifying re-
gions where the Gaussian echoes have approximately equal variances. Note
that given the variances, the radio-frequency signal contains no additional
information, and can thus be regarded as a nuisance parameter.

The observed image y is modelled as resulting from a convolution of the
radio frequency signal x with the imaging system point spread function
h, with the addition of independent and identically distributed Gaussian
noise. We assume the point spread function to be spatially invariant, thus

yi | x ∼ N

(
∑

k

hkxi+k , τ
2

)
, ∀i, (1.85)

where τ2 is the noise variance. The pulse function is modelled as a separable
Gaussian function with a sine oscillation in the radial direction, i.e.

hk,l ∝ exp

(
− k2

2σ2
r

− l2

2σl

)
cos

2πk

ω
. (1.86)

Empirical studies indicate that this is a good approximation which seems
to be quite robust with respect to misspecification of the parameters.

Figure 1.18 shows examples of medical ultrasound images. The images
are log-compressed before display to make it easier to see the anatomy. Fig-
ure 1.18a shows a part of the right ventricle of a human heart, while Figure
1.18b shows a cross-section of the carotid artery. Figure 1.18c shows an ab-
dominal aorta aneurism, that is a blood-filled dilatation of the aorta. In the
middle of the aorta it is possible to spot a vessel prothesis. Common to the
images is the characteristic speckle pattern that makes it difficult for the
untrained eye to spot the important anatomical features. We will focus on
the cross-sectional images of the carotid artery, doing both image restora-
tion and estimation of the cross-sectional area. An interval estimate of the
artery area might also be useful as a mean of diagnosing atherosclerosis.
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(a) (b) (c)

FIGURE 1.18. Real ultrasound images. Panel (a) and (b) show log-compressed
radio frequency images of (a) the right ventricle of the heart, and (b) a cross
section through the carotid artery. Panel (c) shows a B-scan ultrasound image of
an aorta aneurism with a vessel prothesis in the middle.

1.7.2 Image restoration

We first consider restoration of the true radio-frequency image given the
observed image y. In this respect the most important modelling step is the
specification of a prior model for the underlying variance field σ2, since this
parameter contains information about the anatomy of the imaged tissue.
In fact, the radio frequency field x contains no additional information, and
can thus be seen as a nuisance parameter. However, as argued in Husby
et al. (2001), a model formulation containing x has great computational
advantages, since the distribution for the variance field σ2 given the data
has no local Markov structure, whereas the distribution for σ2 given the
data and the radio frequency field has a neighbourhood structure depending
on the support of the point spread function h.

To avoid problems with positivity we reparameterised the model and
define a log-variance field ν = (logσi : i ∈ I). The choice of prior model
for this field should be justified from physical considerations about the
imaged tissue, and we use the following assumptions:

• the scattering intensity tends to be approximately constant within
regions of homogeneous tissue,

• abrupt changes in scattering intensity may occur at interfaces be-
tween different tissue types.

Based on these assumptions it is reasonable to model the log-variance field
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ν as being piecewise smooth with homogeneous subregions corresponding to
the different tissue types in the imaged region. As explained in Section 1.5.1,
edge-preserving functionals are well suited for modelling such fields. Thus
we define the prior distribution for ν as

π(ν) ∝ exp

(
−β

M∑

m=1

wm

∑

i∈I

φ
(
D

(m)
i ν

))
, (1.87)

where φ is a functional from the edge preserving class defined in (1.62),

w1, . . . , wM are positive constants, β is a positive scaling factor, and D
(m)
i

are difference operators approximating first order derivatives, e.g. D
(1)
i ν =

(νi+1−νi)/δ. Unless otherwise stated, we will use the four first order cliques
(and so eight nearest neighbours) with corresponding constants w1 = w2 =
1, w3 = w4 = 1/

√
2. The scaling parameters β and δ are assumed to be

known constants, although it is possible to integrate them out using a fully
Bayesian approach. δ should be selected to match the intensity jumps in
the image, while a suitable choice for β can be found by trial and error.
Large values of β tend to give smooth realisations, while small values give
noisy realisations.

Combining equations (1.84), (1.85) and (1.87) we obtain the full con-
ditional distribution for the radio-frequency image x and the log-variance
field ν as

π(x,ν | . . .) ∝
∏

i∈I

exp


− 1

2τ2

(
yi −

∑

k

hkxi+k

)2

 (1.88)

× exp

(
−x

2
i

2
exp(−2νi) − νi − β

∑

m

ωmφ
(
D

(m)
i ν

))
.

A point estimate x̂ of the true radio frequency image x∗ can be constructed
using MCMC output, and a natural first choice of estimator is the posterior
mean. The simplest way of constructing the Markov chain is to use a single-
site Metropolis-Hastings algorithm for ν, and the Gibbs sampler for x.
Alternatively, one might update ν and x as blocks by using the same dual
formulation as before and utilising an algorithm for efficient sampling of
Gaussian Markov random fields (Rue 2001). The single site sampler was
run for 10, 000 iterations on the blood vessel image in Figure 1.19a, and
posterior mean estimates of the radio frequency- and log-variance-fields are
shown in Figure 1.19b and c, respectively. The images are plotted in polar
coordinates. To get a feel for the convergence of the chain, we have plotted
traces of the log-variance at two different positions (Figure 1.20a and b),

as well as the functional f(ν) = β
∑

m ωm

∑
i φ(D

(m)
i ν) (Figure 1.20c).
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(a) (b) (c)

FIGURE 1.19. Image restoration using an edge-preserving model: (a)
log-compressed radio frequency image of a cross section through the carotid
arteryl in polar coordinates; (b) a-posterior mean estimate of the true radio fre-
quency image; (c) the corresponding posterior mean estimate of the underlying
log-variance field.
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FIGURE 1.20. Convergence diagnostics for the experiment in Figure 1.19. Panels
(a) and (b) show trace plots of the log-variance at different positions, while panel

(c) shows a trace plot of the functional f( � ) = β
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1.7.3 Contour estimation

In this example we will use a template model for detecting the outline of an
artery wall in an ultrasound image. As noted already, this could be used in
diagnosing atherosclerosis, since diseased arteries are less likely to dilate in
response to infusion of achetylcholine. For this procedure to be useful, we
need to quantify the uncertainty of the given answer, for instance by means
of an interval estimate. Thus, doing a segmentation of the image, or using
a standard contour-detection method, would not be satisfactory, as they
only provide point estimates. Moreover, procedures such as segmentation
are not robust with respect to image artifacts such as the missing edge at
the lower right of the artery wall in Figure 1.18b. Such artifacts can easily
be dealt with in a template model, see Husby (2001) for details.

We model the artery outline e as the result of applying a transformation
to a predefined circular template e0 with m edges. The transformation
vector s is modelled as a second order circulant Gaussian Markov random
field with precision matrix Qs = I2 ⊗ Q, where Q is a circulant Toeplitz
matrix with entries

Qij =





κ
m + 6ηm3, j = i

−4ηm3, j = i− 1, i+ 1 mod m

ηm3, j = i− 2, i+ 2 mod m,

κ, η > 0 (1.89)

With this parametrisation the behaviour of the model is approximately
independent of the number m of edges. We assign independent Gamma
priors Γ(aκ, bκ) and Γ(aη , bη) to the parameters κ and η. See Figure 1.16
for some realisations from this model and Hobolth & Jensen (2000) for
some explicit results of the limiting process.

Having an explicit model for the artery wall, we no longer need the
implicit edge model, but a model for the log-variance field is still needed.
A very simple approach is to assume that there are two smooth Gaussian
fields ν0 and ν1 associated with the back- and foreground, respectively.
The fields are defined on the whole image domain, but are only observed
within their respective regions; thus, letting Ts ⊂ I be the set of pixels
enclosed by the template deformed by s, the conditional distribution for
the radio frequency field x is

xi | ν0,i, ν1,i, s ∼
{

N (0, exp(−2ν0,i)) , i ∈ T C
s

∩ I
N (0, exp(−2ν1,i)) , i ∈ Ts ∩ I

∀i ∈ I. (1.90)

For simplicity we use an intrinsic Gaussian Markov random field model for
the log-variance fields,

π(ν0,ν1) ∝ exp


−

1∑

k=0

τk
∑

i∼j

qij (vk,i − vk,j)
2


 , (1.91)
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where

qij =

{
|∂i|, i = j

−1, i ∼ j,

and 0 otherwise. The precisions τ0 and τ1 are given Gamma priors with
common hyperparameters c and d.

Sampling is again done most simply using single site random walk Metro-
polis-Hastings algorithms, but experience shows that this leads to slow con-
vergence for our model. Instead we have used a block sampling algorithm,
see Husby (2001) for details. Figure 1.21a shows a point estimate of the
artery wall based on 200, 000 iterations of the sampler. To get a measure of
the uncertainty we have plotted samples from the posterior distribution in
Figure 1.21b. The variation seems to correspond well with the human per-
ception of uncertainty. A trace plot of the cross-sectional area of the blood
vessel is shown in Figure 1.22; the plot indicates that the chain mixes well,
and confirms that there is a great deal of uncertainty. A density estimate
of the cross-sectional area is shown in Figure 1.23.

(a) (b)

FIGURE 1.21. Contour estimation: (a) Point estimate of the vessel contour; (b)
Samples from the posterior distribution, taken with a separation of 500 iterations.

Acknowledgments: Thanks to Prof. Adrian Baddeley for providing the news-
paper image, and to the referees and editors for their comments.
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FIGURE 1.22. Trace plot of the cross-sectional area of the template in Figure
1.21.
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FIGURE 1.23. Density estimate of the cross-sectional area of the blood vessel in
Figure 1.18 (a).
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