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Abstract

The objective of the presentation is to show how the theory of Gaus-
sian random functions (fields) can be used for describing geological
structures. It will be demonstrated how Gaussian random functions
can be used to obtain the most probable description and to model vari-
ability. Depth conversion of seismic travel time maps to depth maps
will be used as an illustration. The ability for Gaussian random field
models to integrate such diverse information as depth, dip and velocity
information in wells, seismic travel time and velocity maps, and even
subjective knowledge on velocity fields, will be outlined. Properties of
Gaussian random functions will be presented. Some underlying theo-
retical properties will be given, but emphasis is made on the practical
side. Especially the use of spatial prediction and spatial simulation will
be considered in some detail.

1 Introduction

Modelling of natural phenomena requires the ability to quantify the uncer-
tainty not accounted for by measurements and interpretation. This calls for
stochastic models to enrich the deterministic description by adding random
components describing variability. The mathematical complexity makes the
toolbox of available models restrictive. The most thoroughly studied models
are continuous random functions and in particular Gaussian random func-
tions. These have been extensively studied in the literature, see e.g. Doob
(1953), Cramér & Leadbetter (1967), Matheron (1973), Adler (1981, 1990),
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Vanmarcke (1983), Yaglom (19864, 1986b), and Matérn (1986). Most of these
books are theoretical and sparsely consider practical applications.

During the sixties random functions were put into practical work for pre-
dicting ore reserves with associated precision measures in the mining industry.
This was the start of an activity usually referred to as geostatistics. The
methods developed are commonly referred to as kriging. Kriging predictors
were first described by the French mathematician George Matheron for use in
mining applications (Cressie 1990). By now, kriging is a standard technique
described in numerous textbooks. The most recent are Journel & Huijbregts
(1978), Ripley (1981, 1988), Isaaks & Srivastava (1989), Cressie (1991), and
Christakos (1992). The main applications of kriging are still within earth sci-
ences such as mining, petroleum exploration, hydrology, and metrology, see
e.g. the collection of articles in Soares (1993). Thus, the random fields consid-
ered are usually defined on R? where d = 2, 3 or 4 in spatial-temporal settings.
Recently, kriging techniques in a high dimensional parameter space has found
its way into the exploration and utilization of experimental designs (Sacks,
Welch, Mitchell & Wynn 1989).

The cost of computer resources has dropped considerably during the last
decade, so geostatistical simulation, as presented in Journel (1974), has be-
come more easily available. This has boosted the development of simulation
methods having a much broader scope than the more restricted analytical krig-
ing approaches. Thus, more complicated problems can be assessed but usually
at the cost of extensive computer resources. In parallel with the application
of traditional kriging techniques, new developments breaking out of the Gaus-
sian framework has been made. The disjunctive kriging (Matheron 1976) and
indicator kriging (Journel 1989) are examples of this. Moreover, models for
discrete random functions like mosaic variables and event variables are to a
lesser extent used in the earth sciences (Hjort & Omre 1993). Examples of
these random functions are Markov random fields (Besag 1974) and marked
point models (Stoyan, Kendall & Mecke 1987).

This paper focuses on Gaussian random functions and the intention is to
shed light on the possibilities and obstacles of their use in modelling of geo-
logical subsurfaces.

2 Gaussian Random Functions

Consider a standardized Gaussian random function € (x) with x € R?, defined
such that

E{€(x)} =0
Var{€(x)} =1
Cov{e(x'),E(x")} = p(x', x").
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The function p(x’,x") is the spatial correlation function. Gaussianity entails
that for any n, and for any configuration {xi,...,x,}, the random vector
€T = [E(x1),...,E(x,)] has a multi-Gaussian distribution € ~ N,(0,C),
where C;; = p(x;,X;) is a correlation matrix.

Since linear transformations of Gaussian random functions are Gaussian
random functions it is possible to construct a general Gaussian random func-
tion based on the standardized Gaussian random function as

(2.1) Z(x) =m(x) + o(x) E(x).
The expectation and covariances become

B{Z(x)} = m(x)
Var{Z(x)} = o%(x)
Cov{Z(x'), Z(x")} = o(x') o (x") p(x', x").

Virtually all properties of a Gaussian random function are determined by the
expectation, the variance, and the correlation function:
(i) The spatially dependent expectation, m(x), determines the most proba-
ble value of Z(x) at location x.

(ii) The spatially dependent standard deviation, o(x), determines the vari-
ance at x.

(iii) The correlation function, p(x’,x"), determines the regularity of the resid-
ual random function, €(x). Assuming a smooth m(x), this carry over to
the random function, Z(x), it self. The regularity or smoothness is deter-
mined by the behavior of p(x’,x") as x" approach x”. Usually p(x’,x")
approach zero for large separations, and hence independence is reached.

EXAMPLE 2.1 The choice of correlation function determines the roughness of £(x).
Figure 2.1 shows four simulated realizations using the exponential correlation func-
tion class

p(x,x") =exp (=3(Ix = x| /B));  (0<v<2)

with v = 0.5, 1, 1.5, and 2. Tt is seen that the choice of the roughness parameter, v,
has large influence on the appearance. The correlation range, R, defines the length
scale; p = 0.05 for ||x' —x"|| = R. Choosing v = 2, as in Figure 2.1(d), gives
analytical realizations, whereas letting v — 0 give white noise. A wide variety of
permissible correlation functions exist; see e.g. Matérn (1986), Yaglom (1986a), or
Abrahamsen (1994b) for more examples. It is occasionally possible to estimate the
correlation function, but usually the correlation function must be chosen based on
knowledge of the phenomena. d

In many applications the expectation is conveniently modeled as a trend
formed by a linear combination of known functions f,(x):

(2.2) m(x) = ;ﬁp (%) =£"(x)B.
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Figure 2.1: Cross sections of simulated standardized random fields, €(x), using
exponential correlation functions with different roughness parameter v. The corre-
lation length equals one in all pictures. The same pseudo random numbers has been
used in each simulation.

Assuming B is a P-dimensional Gaussian random vector means that Z(x) is
still a Gaussian random function since the 3,’s enter linearly. The expectation
and covariances become

E{Z(x)} = ' (x) {8}
Var{Z(x)} = f(x)" 2 f(x) + o*(x)
Cov{Z(x'), Z(x")} = f(x') TS (x") + o(x') o(x") p(x', xX"),

where ¥ = Var{3}. The variability increases due to the uncertainty in the
random vector B. Also note that the random variables, 3,, add infinite range
correlations since f(x')" X f(x”) is non-zero even for large separation distances.

The model (2.1) with the linear trend (2.2) is a fairly flexible model for
a wide variety of natural phenomenon. It can be considered as a generalized
regression model in functions f,(x) with unknown coefficients f,.

EXAMPLE 2.2 As an illustration, consider depth conversion of interpreted seismic
travel times to a particular subsurface. The travel times, {t(x);x € D C R?}, are
assumed known on a dense grid, £p, covering D. The travel time at x constitutes
spatial averages over an area round x. Moreover, assume that the interval velocity
field can be described as a function of the travel times, say

v(x) = vy + vy t(x).

This entails a possible increase in interval velocity at larger depths for positive v;.
Let Z(x) denote the depth to the subsurface:

Z(x) = v(x) t(x) + o(x) E(x).
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Figure 2.2: Cross sections of simulated standardized random fields conditioned on
data at 0.5 and 1.5. Exponential correlation functions with roughness parameter v
equal 1.5 and 2 has been used. The correlation length is one in both pictures. Each
picture contains 6 different realizations.

This obviously corresponds to (2.1) with the linear trend
m(x) = v(x) tH(x) = vo t(x) + vy 7(x).

The travel times give the expected depth, o(x) is related to the precision of the
seismic measurements and interpretation of travel times, and £(x) represents the
averaging process. O

Observations

The modeling of random functions is normally supported by observations in
some locations, say {xi,...,X,}:

Zl =1Z(x1),..., Z(xn)); x; €D,

with realizations z.,s = [2(x1),...,2(X,)]. Hence, the stochastic model of
interest is the conditional Gaussian random function

[Z(X>|Z0bs = Zobs]; x € D.

The conditional random function inherit the stochastic properties of Z(x) ex-
cept that it is known at the locations of the observations. Consequently, the
variance at the observed location is zero and the conditional expectation must
interpolate the observations. The correlation function however, remains un-
changed.

EXAMPLE 2.3 Realizations of conditional Gaussian random functions can be ob-
tained by first simulating unconditional Gaussian random functions and secondly tie
them to the observations using simple kriging as discussed below. Figure 2.2 show
cross-sections of two sets of standardized Gaussian random functions, [€(x)|€(0.5) =
0.87,£(1.5) = 0.20], having exponential correlation functions with roughness param-
eter, v, equal to 1.5 and 2 respectively. Notice that the spread of the realizations
increase rapidly away from the observations; for v = 2 the increase is linear whereas
for v = 1.5 the increase starts vertical! O
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Often properties of a function of the random function is studied:
H =h([Z(x)|Zobs = 2a1]); X € D.

The function h(-) may represent the bulk volume between a subsurface and
a given oil-water contact, the highest spill point, or the depth at a particular
location. The objective is then to determine the probability distribution of
H. This is most generally done through a sampling approach. This entails
generating a set of independent realizations from the stochastic model for
[Z(x)|Zops = Zobs|, denoted by

{Z(3)|Zobs = Zops|i; i=1,...,5}.
Inserting each realization into h(-) give a set
{H; = h ([Z(X)|Zobs = Zops)i); i=1,...,5}

with empirical distribution approaching the sought probability distribution
as s increase. Thus, from this set, the stochastic properties of H is easily
inferred. The number of realizations needed, depends on the objective; to
obtain a reliable estimate for the expectation or median requires a modest s
while reliable estimates for variance or large quantiles require a much larger s.
Note however, that the empirical distribution is unbiased for any s, it is the
precision that suffers under small s.

The sampling approach outlined above requires that it is possible to sim-
ulate realizations of the conditional Gaussian random function [Z(x)|Zbs =
Zobs]- This means that one must be able to obtain realizations {[Z(x;)|Zops =
Zobs|; | € £p} where £ is a grid covering D. In most applications the number
of nodes in £, exceed 10* which means that traditional stochastic simula-
tion techniques for multi-Gaussian random variables fail. Thus, approximate
algorithms must be used.

Analytical Prediction — Kriging

The sampling approach outlined above applies to any function h(-). For certain
classes of functions however, analytical solutions are possible. The simplest
cases appear when h(-) is linear; for instance

H = [Z(x0)|Ziobs = Zobs); point value,
H=a+ b[Z(XO) |Zobs = Zobs); linear combination,
H = / ) |Zobs = Zobs) du; spatial average,

I[Z(u >|Z0bs = ZobS]

H =
8ui ’

derivative.
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All these H’s are Gaussian random variables with expectation and variances
deduced from the expectation and covariance function of [Z(X)|Zobs = Zobs]-

The first case is of particular interest; it provides the probability distribu-
tion of Z(x) at a location x, given the observations. For the depth conversion
example this is the probability distribution for the depth to the subsurface at
an arbitrary location xy, € D. The distribution is Gaussian so it suffices to
obtain the expectation and the variance for a full account of the probability
distribution.

First assume that m(x) is known, that is, 8 are known numbers. The
centered observations are z,s — F3, where F;, = f,(x;). Since Z(x) and the
observation vector Zgs are n+1 multi Gaussian variables, well known formulas
for the conditional expectation and variance applies. The result is

(23)  E{Z(x0)|Zobs = Zons} = 7 (x0) B+ K" (x0) K™ (2ons — F)
(2.4) Var{Z(x0)|Zobs = Zops} = 0% (x0) — k¥ (x0) K 'k(x0),

where the vector k(xg) and the matrix K are

k(xg) = Cov{Z(X¢), Zobs } = Cov{Z(xy), Zors — FB}
K = Var{Z,,} = Var{Z.,s — F3}.
The predictor (2.3) is commonly called the simple kriging predictor (Journel
& Huijbregts 1978, Cressie 1991) whereas the covariance matrix K is called
the kriging matrix.
Consider now the case where the expectation is given as a linear trend (2.2)

where the random vector 3 has a prior P-dimensional Gaussian distribution:
B ~ Np(By, Xo). The corresponding result can be written as

(2.5) E{Z(x0)|Zobs = Zons} = fT(X>B0 + kg(XO)KZ}l (Zobs — FBy)
(2.6) Var{Z(x9)|Zobs = Zobs }
= 0%(xq) + £ (x0) Bof (x0) — ki (x0) K5 kg(x0),

where the Bayesian covariance vector and kriging matrix are

kp(xo) = Cov{Z(xg), Zops } = k(x0) + " (x0)ZoF"
Kp = Var{Z.,;} = K + FXF’.

The predictor (2.5) is called the Bayesian kriging predictor (Omre & Halvorsen
1989). It allows prior believes on the coefficients 3 to be incorporated through
the choice of the prior expectation, B,, and the prior covariances, ¥.

In the limit 3, — 0, that is, the prior information is exact, the simple
kriging predictor appears. The opposite limit: ¥y — oo (i.e. 5" — 0), the
ignorant prior, provides

(2.7)  B{Z(x0)|Zobs = Zops} = T (x0) B + k' (x0) K™} (2ops — FB)
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(2.8)  Var{Z(x0)|Zobs = Zobs }
= 0%(x¢) 4 7 (x0) 2f* (%) — kT (x0) K k(x),

where £*(xq) = f(x¢) —k” (xo)K~'F, and the generalized least squares estimate
and estimation covariances for 3 are

(2.9) B=F'K'F)'F"K'zp,s, and ¥ = (F'K'F)™".

The predictor (2.7) is called the universal kriging predictor (Journel & Hui-
jbregts 1978, Ripley 1981, Cressie 1991).

The conditional expectations (2.3), (2.5), or (2.7) respectively, are the best
prediction of Z(xg) at location xy. By varying xq over D in the depth conver-
sion example, the best pointwise predicted subsurface is obtained:

{E{Z(x)|Zops = Zons } ;x € D}

The corresponding prediction variances given by (2.4), (2.6), or (2.8) respec-
tively provides corresponding error maps given as

{va’r{Z(X>|Zobs = Zobs}l/2 X € D}

Whether to use simple, Bayesian, or universal kriging depends on the gen-
eral experience with the variable under study, on the number of parameters in
the trend, and on the number of data. If the trend is known simple kriging
provides the obvious method. If the number of data is small and experience
recommends the use of a trend model including several parameters, Bayesian
kriging provides a robust and flexible method. If the number of data is large
compared to the number of parameters, universal kriging gives good predic-
tions without requiring any prior believes to be specified.

EXAMPLE 2.4 As an illustration a 5.5 kilometer cross-section of a geological dome
observed in three wells are considered. The trend model is based on observed seismic
travel times and is similar to the model in Example 2.2. Figure 2.3(a) shows the
prior guess on the trend. Figures 2.3(b), (¢), and (d) show predictions using simple,
Bayesian, and universal kriging respectively. A spherical correlation function with
3000 meter correlation length has been used. For simple kriging the trend is assumed
known and is taken equal to the expectation of the prior guess. For the Bayesian
approach the prior guess is a suggestion on the trend of the subsurface with precision
given by the prior variance. For the universal kriging approach, the prior guess is
ignored. The three well data are hardly enough for estimating the acceleration
parameter, vy, so the universal kriging prediction is unreliable away from the wells.
On the other hand the simple kriging prediction assumes a known trend model which
is hardly realistic, so the associated prediction errors are to small. The Bayesian
approach is a reasonable compromise; the acceleration parameter is mainly defined
by the prior guess while the vy parameter is properly estimated from the data. Since
the model parameters, (vy,v;), have physical interpretations, prior believes on their
values are usually present. This justify the use of a Bayesian approach. O
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Figure 2.3: Cross sections of predicted subsurfaces. Figure (a) shows the prior guess
with uncertainty bounds. Figures (b), (¢), and (d) are predictions obtained using
simple, Bayesian, and universal kriging respectively. Error bounds are one standard
deviation.

3 Model Extensions

In the previous section depth conversion of seismic travel times was used as
an illustration. In this section it will be shown how the stochastic model for a
subsurface can be extended to:

- include observation errors,
model the velocity field as a Gaussian random function and use observa-
tions of the velocity field for depth prediction,
use gradient data from dip meters to improve depth predictions,
model multiple subsurfaces consistently.

The extended models will consist of a collection of correlated Gaussian random
functions and the kriging techniques described in the previous section will be
modified to cope with this. Simple kriging conditioned on data from additional
random functions is commonly called cokriging. Bayesian and universal krig-
ing can also be modified to include observations from a collection of random
functions, so appropriate names could be Bayesian and universal cokriging.

The contents of this section is specific to the application of seismic depth
conversion but the basic ideas are useful in many contexts.
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Observation Errors

Observations of random functions are occasionally corrupted by errors. Con-
sider a set of n observations organized in a vector

Z8 =7 + €' = [Z(x1) +e(x1), ..., Z(xa) +€(x,)];  x; €D,

where €(x;) are multi Gaussian measurement errors independent of Z(x) with
vanishing expectation. Observing that

Cov{Z(x0), Z, .} = Cov{Z(X0), Zons} = k(x0)
Var{Z¢, .} = Var{Z.,} + Var{e} = K+ K¢

shows that the expectations and variances conditioned on the noise corrupted
data are obtained by substituting K by K+K°¢ in the predictors and prediction
variances, (2.3) through (2.8). The simplest example occurs for independent
measuring errors where K¢ = diag(c2 (x1),...,02%.(x,)), with 02 _(x;) being
the variance of the measuring error at x;. Thus, the measuring error is sim-
ply introduced by adding the corresponding variances to the diagonal of the
kriging matrix. The consequence of introducing measuring errors is that the
kriging predictors no longer interpolate the observations, and moreover, that

the prediction errors are nonzero at these locations.

EXAMPLE 3.1 Assume that the middle observation in Example 2.4 for some reason
is inaccurate. Figure 3.1 show a prediction using universal kriging. This figure
should be compared to Figure 2.3(d). It is seen that the prediction fails to honour
the middle well observation and moreover, the prediction error is nonzero. O

Velocity Observations

In the previous section the interval velocity was modelled using a trend formed
by a linear sum of known functions multiplied by unknown or partially known
coefficients such as the model in Example 2.2. Such a trend is a rough approx-
imation to the real interval velocity field. A more realistic model is to add a
stochastic component describing local variations in velocity

(3.1) V(x) = my(x) + ov(x) Ev(x),
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where my (x) = g7 (x)8 is, as previously, a linear trend. Moreover, €y (x) is
a standardized Gaussian random function accounting for variations not prop-
erly modelled by the trend, and 0% (x) is the associated laterally dependent
variance. To obtain a model for the depth to a subsurface an additional model
for the travel times is needed:

T(x) = t(x) + or(x) Ep(x),

where the interpreted travel times, t(x), are assumed to be a proper trend
for the ‘true’ travel time, T'(x). Now the residual, or(x)Er(x), is supposed
to account for interpretation errors and the smoothing in the seismic signals.
The depth model becomes:

Z(x) = V(x) T(x) = (my(x) + ov(x) Ev(x)) (H(x) + or(x) Er(x)).

To make this expression more tractable two modifications will be made. The
product involving €y (x) Er(x) is ignored. This is justified provided the trends
are significantly larger than the residuals. Secondly, my (x) or(x) Ep(x) is re-
placed by a residual oz(x)Ez(x) which is assumed to consist of a known
variance, 0%(x), and a standardized Gaussian random function, € z(x) inde-
pendent of €y(x). The resulting expression for the depth reads

(3:2) Z(x) = my (x) t(x) + [ov (x) {(x)] Ev (%) + 02(x) E5(x).

This expression is in principal equivalent to (2.1). The depth model includes
three parts: the velocity trend multiplied by the interpreted travel times, a
residual caused by anomalies in the velocity field, and a residual caused by
inaccuracies in the interpreted travel time map.

At this point a model for the velocity (3.1) and a model for the depth
(3.2) have been established. Both models are Gaussian random functions with
properly defined expectations and covariance functions and fits into the kriging
framework outlined in the previous section. The new feature is that the models
are correlated through the common velocity trend, my (x), and the common
residual function, €y (x). The dependency is given by the cross covariances:

Cov{Z(x), V(x)} = [ov(x) t(x)]ov (x') py (x,x'),
or assuming B are multi Gaussian random variables, the cross covariance are
Cov{Z(x),V(x')} = t(x)g" (x)Dog(xX) + [ov(x) t(x)]ov (x') pv(x, X)),

where X is the specified prior covariance matrix of 3.
Assume there exists observations of depth and observations of interval ve-
locities:

Zl. =12(x3),...,Z(x)] and VI _ =[V(xY),...,V(x)].

n m
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The position of the observations are arbitrary but usually velocity observations
are available at a subset of the velocity observations. The objective is to assess
the probability distribution of the conditional Gaussian random functions

[Z(X)|Zobs = Zobs, Vobs - Vobs] and [V(X)|Zobs = Zobs, Vobs = Vobs]-

Prediction of Z(xg) given the available data are of particular interest. Assume
the trend, my (x), is known and consider the centered observations z.,s — F(3,
where Fj, = ¢,(x7)t(x}) and veps — GB, where G, = g,(xV). Since Z(xy),

() ()
Zons, and Ve are a set of n +m + 1 multi Gaussian random variables, the
formulas for conditional expectation and variances give

(3.3)  E{Z(x%0)|Zobs = Zobss Vobs = Vobs |
= my(xo) t(x0) + k¥ (x) K [
(3.4)  Var{Z(x0)|Zobs = Zobss Vobs = Vobs }
= [ov(x0) t(x0)]* + 07(x0) — k" (x0) K™ 'k" (x0),

Zobs — FIB
Vobs — GIB

where the covariance vector and kriging matrix now reads

ixo = Con{ 2. [B07] ) = [t o ~ 28]

K=V Zobs _ Var{zobs - FIB} COV{Zobs - Fﬁv Vobs - GIB}
A Vobs B COV{‘/obs - Gﬁ? Zobs - Fﬁ} Var{Vobs - Gﬂ} ’

Similar expressions for the velocities are obtained by using the trend my (x) in
(3.3) and replacing Z(xg) by V(xg) in the covariance vector k(xg). Comparing
(3.3) and (3.4) to (2.3) and (2.4) reveals that the equations for simple kriging
are very similar; the difference is that the kriging matrix and covariance matrix
must be expanded to accommodate the cross covariances.

It is straight forward to extend the above formalism to Bayesian or uni-
versal kriging. Just as k(xp) and K were expanded to accommodate the addi-
tional cross covariances, f(xg) and F must be expanded to accommodate the
trend functions at all the locations of the observations. For more details see
Abrahamsen (1993) from where the following example is taken.

ExaMpPLE 3.2 To illustrate the properties of cokriging consider a velocity function
with a constant unknown trend, my (x) = vg. Three velocity and four depth obser-
vations are available. Figures 3.2(a), (b), and (c) show cross sections of predictions
of the velocity function conditioned on velocity observations alone, depth observa-
tions alone and all seven observations. The velocity residual has been chosen to
have a exponential correlation function with v = 2, giving smooth bell-shaped forms
around the observations. Bayesian cokriging were used. The ‘hump’ on the right
side of Figures 3.2(b) and (c) are caused by the depth observation with no accom-
panying velocity observation. From Figure 3.2(b), where velocity observations are
ignored, it is seen that the depth data carry valuable information on the shape of
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(a) Only velocity observations:
| |
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(¢) Depth and velocity observations:
| | |

(b) Only depth observations:
| | | |
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2500 -

I I I I T
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Figure 3.2: Cross sections of Bayesian velocity predictions conditioned on velocity
(a), depth (b), or all observations (c). Velocity along the vertical axis and lateral
position in kilometers along the horizontal axis.

the velocity function. Comparing Figure 3.2(a) to 3.2(c) reveals that using depth
data has minor influence in regions where velocity data are already present but sig-
nificant influence in regions where velocity observations are missing. This is due to
high correlations between depth and velocity observation in the same location. This
is a sign of redundancy in the data. O

Dip Observations

Occasionally reliable dip meter observations are available. They carry infor-
mation on the gradient of the subsurface, that is, the slope and the direction
of the slope. When considering the gradient of a Gaussian random function
it is tacitly assumed that the gradient actually exist. Assuming a smooth ex-
pectation, m(x), and variance, o%(x), the existence of the gradient is related
to the behaviour of the correlation function, p(x,x’), as x — x’. A sufficient
condition is that [Cramér & Leadbetter (1967, p. 84) and Abrahamsen (19940,
p. 25)]

9*p(x, x')

= finite
x—=x' Jx; O

foralli,j =1,...,d.

(d = 2 for subsurfaces.) This puts strong restrictions on the correlation func-
tion. For instance the exponential correlation functions in Example 2.1 do not
compile to this requirement unless v = 2. Thus, only display (d) in Figure 2.1
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14 Petter Abrahamsen and Henning Omre ECMOR IV

possess differentiable curves; this should not come as a surprise considering the
appearance of the figures. Display (a—c) are too rough even though they are
continuous everywhere. Several other correlation functions give differentiable
Gaussian random functions; see Abrahamsen (1994a) for some examples.

For a subsurface Z(x) defined on R? the associated gradient field, Z(x),
is a two-dimensional vector in R? defined by its components in a Cartesian
coordinate system:

Zi(x) = 855); i=1,2.
Assuming E{Z(x)} = m(x), then
iii(x) = B{Zi(x)} = a’gg% i=1,2.

Further, assume that the covariance function, C'(x,x’") = Cov{Z(x), Z(x')} =
o(x) o(x') p(x,x’), is simultaneously differentiable in x and x’, that is, Z(x) is
mean square differentiable. Then, the cross-covariance functlon between Z(x)
and a component of Z(x) is a vector defined by the components

0

. no__ 7 (N Y S
C’i(x,x)—Cov{Z(x),Zl(x)}— o -C'(x,x'); i=1,2.
The covariance functions between components of Z(x) are
. . : o2 o
Cij(X, Xl) = COV{Zi(X), Zj(XI)} = axlaxzc(xa XI); ] = ]-? 2.

The matrix Cj;(x,x’) is a second rank tensor called the covariance tensor of
the gradient field, whereas the components of the vector, Ci(x, x'), form a first
rank tensor.

Assume there exist observations of depth and dip in a number of wells:

Zops = [Z2(x3),.. Z(x;)] and  Z3, = [Z1(x7), Zo(x), ..., Z1(x,), Zo(x3,)):

n

The position of the observations are arbitrary but usually dip observations
are available in a subset of the wells. Since Z(Xq), Zobs, and Zobs are a set
of n + 2m + 1 multi Gaussian random variables, the formulas for conditional
expectation and variances apply once more to give the predictor:

. . — Zobs — F
E{Z(X0)|Z0bs = Zobs, Zobs = Zobs} = m(XO) + kT(XO)K ' lZ E — Fg]

var{Z(XO)|Zobs = Zobs; Zobs — Zobs} - UQ(XO) - kT(XO)K_IkT(XO)a

where the covariance vector and kriging matrix now reads:

o =con{ 70, [} = [ St e 20

- Zon ]| Var{Zovs — F3} Cov{ Zovs ~ FB, Zors — 3}
K= Var{ [ZE} } B [COV{ZObS B, Zope — Fﬂ} Var{ e — Fﬂ} ] '
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(a) Depth data: (b) Depth and dip data:

S IS)

-0.5
-0.5

Prediction
-1.0

Prediction
-1.0

-1.5
-15

-2.0
-2.0

0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 20 25

t
(¢) Depth data: (d) Depth and dip data:
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Figure 3.3: Cross sections of predictions conditioned on depth and dip data. Figures
(a) and (b) show predictions as solid lines and the dashed lines are the ‘true’ function.
Figures (c¢) and (d) show the corresponding prediction errors as solid lines whereas
the dashed lines are the difference between the prediction and the true function
(absolute value).

All these covariances are given by the covariance function, C'(x,x’), the cross-
covariance function, C.’l-(x, x'), and the covariance tensor, C’U (x,x).

Conditioning on gradient data is just another variety of cokriging. The
special feature is that all covariance functions are uniquely determined by
the basic covariance function C(x,x’). Extensions to Bayesian and universal
kriging predictors are straight forward. For more details consult Abrahamsen
(1994a). An example of predicting a subsurface is found in Renard & Ruffo
(1993), but they do not use the travel times nor do they compute the prediction
error.

ExAMPLE 3.3 Consider a standardized Gaussian random function with the expo-
nential correlation function having roughness parameter v = 2. This function has
been observed at three locations. Figure 3.3(a) show a prediction using these three
data and Figure 3.3(c) show the associated prediction error. Assume further that
the derivatives or dip has been observed at the same three locations. Figure 3.3(b)
show a prediction using the three depth and three dip data. Figure 3.3(d) show
the corresponding prediction errors. The figures mainly speaks for them selves but
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16 Petter Abrahamsen and Henning Omre ECMOR IV

note in particular the effect of two near observations. In Figure 3.3(a) they mimic
a combination of a depth and a dip data, whereas in Figure 3.3(b) they mimic a
combination of a depth, a dip, and a second order derivative data. O

It is seen that observations of dip potentially have strong predictive power.
It should however be mentioned that the correlation function used in this
example describe the smoothest possible Gaussian random function. For real
subsurfaces this is unrealistic so other correlation functions must be used.
These will in comparison reduce the importance of dip information.

Multiple Subsurface Model

In most applications of depth conversion several subsurfaces are considered.
Thus, a consistent simultaneous description of several subsurfaces are called
for. Some of these could be seismic reflectors whereas others are invisible on
the seismics and must be modelled by using geological knowledge. More details
are found in Abrahamsen (1993).

The main idea is to use a stochastic description of each interval above the
deepest subsurface. The stochastic description of the thickness of, say interval
[, will contain a term accounting for the trend and a residual including a
standardized Gaussian random field:

AZ(x) = my(x) + oy (x)E(x).

The model for the depth to subsurface [ is Z;(x) = Y>'_, AZ;(x). Now consider
a subsurface k& and a deeper subsurface [, that is, [ > k. These subsurfaces
are correlated since Z;(x) = Z;.(x) + Xt AZ;(x), i.e., they have the trends
and residuals describing Z;(x) in common. Thus, a prediction of subsurface
[ must be conditioned on all well observations, including depth observations
of subsurfaces above and below. A major advantage of this approach, com-
pared to the traditional, where each interval is treated separately, is the ability
to include deviating wells consistently, and moreover, the ability to compute
realistic prediction errors for all subsurfaces.

Simple, Bayesian, and universal kriging predictors using all available data
are established in the same way as before. An example illustrates the practical
consequences:

EXAMPLE 3.4 Consider two seismic reflectors. Depth observations from three ver-
tical wells and one deviating well are available. Figure 3.4(a) show predictions
performed in the traditional way; The upper subsurface is conditioned on the four
observations from this subsurface. Then the interval is predicted given the prediction
of the upper subsurface and the observations of the interval thickness. Figure 3.4(b)
show predictions of the two subsurfaces conditioned on all the data. Note in partic-
ular the ability to assess the uncertainty around the deviating well correctly. It is
also seen that the upper subsurface is modified by the rightmost observation of the
lower subsurface. O
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(a) Independent: (b) Correlated:
| | |

3200 3200

3300 — 3300 —

3400 3400 —

3600+ 7 - 3s00-L oS -

Predicted depth Predicted depth
4 — — — — Error bounds 4 — — — — Error bounds
3700 \ \ \ \ \ 3700 \ \ \ \ \
399 400 401 402 403 404 399 400 401 402 403 404

Figure 3.4: Cross-section of prediction of two correlated subsurfaces. Figure (a)
shows the traditional approach where the interval is predicted independently of the
upper subsurface. Figure (b) shows predictions conditioned on all observations.
Depth along the vertical axis and lateral position in kilometers along the horizontal
axis.

When considering seismic reflectors, the models should be simplified by
ignoring the errors in the travel times above subsurface /. This approximation
is excellent provided the velocity contrasts from layer to layer are moderate.

4 Parameter Inference

For Gaussian random functions three classes of model parameters are defined:
(i) trend parameters, e.g. B, (ii) scale of variance, o(x), and (iii) parameters in
the correlation function, e.g. ¥ and R. Moreover, the general form of correlation
function has to be specified. In this section only a brief outline of the problem
of estimating these parameters from data will be outlined. Some important
references will be given.

Inference about the parameters are complicated since the number of ob-
servations usually is small, the observations are occasionally inaccurate, they
are usually correlated, and they are frequently preferentially sampled. Thus,
the assumptions on which traditional inference is based are normally violated.
Large parts of the inference theory of spatial models remains to be developed.

The geostatistical tradition has developed many rules of thumb for assessing
parameter values. Journel & Huijbregts (1978), Isaaks & Srivastava (1989),
and Cressie (1991) provides a good overview. Attempts on applying more
classical statistical criteria in the estimation has also been made. Mardia
& Marshall (1984) used a maximum likelihood estimator and reported bias
problems although multi modality mixed with numerical instability could have
been the cause. The sensibility of using maximum likelihood was challenged
by Warnes & Ripley (1987). In Hjort & Omre (1993) a maximum pseudo-
likelihood approach like Besag (1974), was suggested, and a maximum quasi-
likelihood procedure was developed in some detail. An elegant procedure for
testing the significance of parameters in the spatial correlation function was
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18 Petter Abrahamsen and Henning Omre ECMOR IV

proposed by Switzer (1984).

The Bayesian formulation of the problem seems to simplify the inference of
parameters. Kitanidis (1986), Omre (1987) Omre & Halvorsen (1989), Hjort
& Omre (1993), and Handcock & Stein (1993) all developed posterior dis-
tributions for the model parameters. To reach the parameters in the spatial
correlation function, numerical integration is occasionally required.

5 Simulation of Random Functions

The challenge is to generate a realization of {[Z(X)|Zors = Zons]; X € D}
according to the specified model. In practice the Gaussian random function
has to be represented on a grid, £p, covering D. Hence, the problem is to
simulate a Gaussian random vector. This may appear simple since all Gaus-
sian random vectors can be expressed as linear combinations of independent
Gaussian random variables. The coefficients in the linear combination are eas-
ily obtainable from the cholesky decomposition of the covariance matrix of the
random vector. However, the problem is the dimensionality since the grid, £p,
may contain 107 elements. So in practice, algorithms based on approximations
must be used.

Traditionally, conditional simulation has been based on the following de-
composition:

[Z(X)|Zobs — Zobs]i
= E{Z(x)|Zobs = Zobs} + Yi(x) — E{Y(x)|Yorsi}; i=1,...,s,

where Y;(x) is a realization of a Gaussian random function Y'(x) having the
same variance and correlation function as Z(x), and Y, being a vector of
observations from Y;(x) taken at the locations of Z... For a known expec-
tation, the simple kriging predictor and the associated prediction error are
orthogonal. From this fact it is easily proven that the above expression give
the correct distribution.

The decomposition above requires only a non-conditional Gaussian random
function to be simulated, i.e. Y;(x). Many approaches for this have been pro-
posed; turning bands (Matheron 1973, Christakos 1992), frequency-domain
(Borgman, Taheri & Hagan 1984), and sequential algorithms (Omre, Sglna
& Tjelmeland 1993). Another procedure for simulating conditional Gaussian
random functions on large lattices follows from the factorization of the multi
Gaussian pdf into univariate conditional Gaussian pdf’s. A conditional simula-
tion algorithm using this is described by Gémez-Hernandez & Journel (1993).

6 Closing Remarks

The methods described have been successfully applied to several case studies.
They are mainly extensions to methods widely used within the petroleum

Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 19

industry.

There are several advantages of using a formalized stochastic model for
describing geological subsurfaces:

e Model assumptions are fully specified so results can be reproduced and

consequences of the model can be checked.

e Different types of data are included consistently adhering to varying pre-
cision.

e Prediction errors take into account the complicated relationships between
different subsurfaces and interval velocity fields. Thus, prediction er-
rors are correctly calculated and they are realistic provided the specified
model is realistic.

e Introducing new observations requires no adjustments of the models, —
the conditional model will automatically honour new observations.

e Observations from deviating wells and interval velocity observations are
handled correctly according to the model.

Moreover, using Gaussian random functions and linear trend models give effi-
cient calculations since the conditioning is done analytically. Using non-linear
trend models requires numerical optimization whereas using a non-Gaussian
residual could imply an optimization criteria different from the least squares
criteria implicitly used in the previous sections. The conditional expectations
and variances would be replaced by numerical integrals that could be evaluated
at the cost of extensive computer resources.

In the search for a more accurate description of natural phenomena, im-
proved understanding of the physics governing the relationships between mea-
surements and the phenomena itself is the key. Stochastic models should ide-
ally describe a small gap between the state of the art deterministic description
and the phenomena itself. Thus, a future challenge is to include more precise
deterministic descriptions of the phenomena to minimize the stochastic parts
of the model. The role of the stochastic part of the model is twofold: it reduces
uncertainty by prescribing optimal ways of estimating model properties, and
it quantifies the uncertainties so that financial risks can be studied.
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