
Random Functions and Geological SubsurfacesyPetter Abrahamsen1;3 Henning Omre2;31University of Oslo, Department of Mathematics, P.O.Box 1053Blindern, N-0316 Oslo, Norway.2Norwegian Institute of Technology, Department ofMathematical Sciences, N-7034 Trondheim, Norway.3Norwegian Computing Center, P.O.Box 114 Blindern, N-0314Oslo, Norway.AbstractThe objective of the presentation is to show how the theory of Gaus-sian random functions (�elds) can be used for describing geologicalstructures. It will be demonstrated how Gaussian random functionscan be used to obtain the most probable description and to model vari-ability. Depth conversion of seismic travel time maps to depth mapswill be used as an illustration. The ability for Gaussian random �eldmodels to integrate such diverse information as depth, dip and velocityinformation in wells, seismic travel time and velocity maps, and evensubjective knowledge on velocity �elds, will be outlined. Properties ofGaussian random functions will be presented. Some underlying theo-retical properties will be given, but emphasis is made on the practicalside. Especially the use of spatial prediction and spatial simulation willbe considered in some detail.1 IntroductionModelling of natural phenomena requires the ability to quantify the uncer-tainty not accounted for by measurements and interpretation. This calls forstochastic models to enrich the deterministic description by adding randomcomponents describing variability. The mathematical complexity makes thetoolbox of available models restrictive. The most thoroughly studied modelsare continuous random functions and in particular Gaussian random func-tions. These have been extensively studied in the literature, see e.g. Doob(1953), Cram�er & Leadbetter (1967), Matheron (1973), Adler (1981, 1990),yInvited lecture presented at ECMOR IV, 4th European Conference on the Mathematics ofOil Recovery, R�ros, Norway, 7.{10. june 1994.1



2 Petter Abrahamsen and Henning Omre ECMOR IVVanmarcke (1983), Yaglom (1986a, 1986b), and Mat�ern (1986). Most of thesebooks are theoretical and sparsely consider practical applications.During the sixties random functions were put into practical work for pre-dicting ore reserves with associated precision measures in the mining industry.This was the start of an activity usually referred to as geostatistics. Themethods developed are commonly referred to as kriging. Kriging predictorswere �rst described by the French mathematician George Matheron for use inmining applications (Cressie 1990). By now, kriging is a standard techniquedescribed in numerous textbooks. The most recent are Journel & Huijbregts(1978), Ripley (1981, 1988), Isaaks & Srivastava (1989), Cressie (1991), andChristakos (1992). The main applications of kriging are still within earth sci-ences such as mining, petroleum exploration, hydrology, and metrology, seee.g. the collection of articles in Soares (1993). Thus, the random �elds consid-ered are usually de�ned on Rd where d = 2; 3 or 4 in spatial-temporal settings.Recently, kriging techniques in a high dimensional parameter space has foundits way into the exploration and utilization of experimental designs (Sacks,Welch, Mitchell & Wynn 1989).The cost of computer resources has dropped considerably during the lastdecade, so geostatistical simulation, as presented in Journel (1974), has be-come more easily available. This has boosted the development of simulationmethods having a much broader scope than the more restricted analytical krig-ing approaches. Thus, more complicated problems can be assessed but usuallyat the cost of extensive computer resources. In parallel with the applicationof traditional kriging techniques, new developments breaking out of the Gaus-sian framework has been made. The disjunctive kriging (Matheron 1976) andindicator kriging (Journel 1989) are examples of this. Moreover, models fordiscrete random functions like mosaic variables and event variables are to alesser extent used in the earth sciences (Hjort & Omre 1993). Examples ofthese random functions are Markov random �elds (Besag 1974) and markedpoint models (Stoyan, Kendall & Mecke 1987).This paper focuses on Gaussian random functions and the intention is toshed light on the possibilities and obstacles of their use in modelling of geo-logical subsurfaces.2 Gaussian Random FunctionsConsider a standardized Gaussian random function "(x) with x 2 Rd, de�nedsuch that Ef"(x)g = 0Varf"(x)g = 1Covf"(x0);"(x00)g = �(x0;x00):Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 3The function �(x0;x00) is the spatial correlation function. Gaussianity entailsthat for any n, and for any con�guration fx1; : : : ;xng, the random vector"T = ["(x1); : : : ;"(xn)] has a multi-Gaussian distribution " � Nn(0;C),where Cij = �(xi;xj) is a correlation matrix.Since linear transformations of Gaussian random functions are Gaussianrandom functions it is possible to construct a general Gaussian random func-tion based on the standardized Gaussian random function asZ(x) = m(x) + �(x)"(x):(2.1)The expectation and covariances becomeEfZ(x)g = m(x)VarfZ(x)g = �2(x)CovfZ(x0); Z(x00)g = �(x0) �(x00) �(x0;x00):Virtually all properties of a Gaussian random function are determined by theexpectation, the variance, and the correlation function:(i) The spatially dependent expectation, m(x), determines the most proba-ble value of Z(x) at location x.(ii) The spatially dependent standard deviation, �(x), determines the vari-ance at x.(iii) The correlation function, �(x0;x00), determines the regularity of the resid-ual random function, "(x). Assuming a smooth m(x), this carry over tothe random function, Z(x), it self. The regularity or smoothness is deter-mined by the behavior of �(x0;x00) as x0 approach x00. Usually �(x0;x00)approach zero for large separations, and hence independence is reached.Example 2.1 The choice of correlation function determines the roughness of "(x).Figure 2.1 shows four simulated realizations using the exponential correlation func-tion class �(x0;x00) = exp ��3 (kx0 � x00k =R)�� ; (0 < � � 2)with � = 0:5, 1, 1.5, and 2. It is seen that the choice of the roughness parameter, �,has large in
uence on the appearance. The correlation range, R, de�nes the lengthscale; � � 0:05 for kx0 � x00k = R. Choosing � = 2, as in Figure 2.1(d), givesanalytical realizations, whereas letting � ! 0 give white noise. A wide variety ofpermissible correlation functions exist; see e.g. Mat�ern (1986), Yaglom (1986a), orAbrahamsen (1994b) for more examples. It is occasionally possible to estimate thecorrelation function, but usually the correlation function must be chosen based onknowledge of the phenomena. �In many applications the expectation is conveniently modeled as a trendformed by a linear combination of known functions fp(x):m(x) = PXp=1 �p fp(x) = fT (x)�:(2.2)Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00
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(c) � = 1:5
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(d) � = 2
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Figure 2.1: Cross sections of simulated standardized random �elds, "(x), usingexponential correlation functions with di�erent roughness parameter �. The corre-lation length equals one in all pictures. The same pseudo random numbers has beenused in each simulation.Assuming � is a P -dimensional Gaussian random vector means that Z(x) isstill a Gaussian random function since the �p's enter linearly. The expectationand covariances becomeEfZ(x)g = fT (x) Ef�gVarfZ(x)g = f(x)T�f(x) + �2(x)CovfZ(x0); Z(x00)g = f(x0)T�f(x00) + �(x0) �(x00) �(x0;x00);where � = Varf�g. The variability increases due to the uncertainty in therandom vector �. Also note that the random variables, �p, add in�nite rangecorrelations since f(x0)T�f(x00) is non-zero even for large separation distances.The model (2.1) with the linear trend (2.2) is a fairly 
exible model fora wide variety of natural phenomenon. It can be considered as a generalizedregression model in functions fp(x) with unknown coe�cients �p.Example 2.2 As an illustration, consider depth conversion of interpreted seismictravel times to a particular subsurface. The travel times, ft(x);x 2 D � R2g, areassumed known on a dense grid, LD, covering D. The travel time at x constitutesspatial averages over an area round x. Moreover, assume that the interval velocity�eld can be described as a function of the travel times, sayv(x) = v0 + v1 t(x):This entails a possible increase in interval velocity at larger depths for positive v1.Let Z(x) denote the depth to the subsurface:Z(x) = v(x) t(x) + �(x)"(x):Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00
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Figure 2.2: Cross sections of simulated standardized random �elds conditioned ondata at 0.5 and 1.5. Exponential correlation functions with roughness parameter �equal 1.5 and 2 has been used. The correlation length is one in both pictures. Eachpicture contains 6 di�erent realizations.This obviously corresponds to (2.1) with the linear trendm(x) = v(x) t(x) = v0 t(x) + v1 t2(x):The travel times give the expected depth, �(x) is related to the precision of theseismic measurements and interpretation of travel times, and "(x) represents theaveraging process. �ObservationsThe modeling of random functions is normally supported by observations insome locations, say fx1; : : : ;xng:ZTobs = [Z(x1); : : : ; Z(xn)]; xi 2 D;with realizations zobs = [z(x1); : : : ; z(xn)]. Hence, the stochastic model ofinterest is the conditional Gaussian random function[Z(x)jZobs = zobs]; x 2 D:The conditional random function inherit the stochastic properties of Z(x) ex-cept that it is known at the locations of the observations. Consequently, thevariance at the observed location is zero and the conditional expectation mustinterpolate the observations. The correlation function however, remains un-changed.Example 2.3 Realizations of conditional Gaussian random functions can be ob-tained by �rst simulating unconditional Gaussian random functions and secondly tiethem to the observations using simple kriging as discussed below. Figure 2.2 showcross-sections of two sets of standardized Gaussian random functions, ["(x)j"(0:5) =0:87;"(1:5) = 0:20], having exponential correlation functions with roughness param-eter, �, equal to 1.5 and 2 respectively. Notice that the spread of the realizationsincrease rapidly away from the observations; for � = 2 the increase is linear whereasfor � = 1:5 the increase starts vertical! �Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



6 Petter Abrahamsen and Henning Omre ECMOR IVOften properties of a function of the random function is studied:H = h�[Z(x)jZobs = zobs]�; x 2 D:The function h(�) may represent the bulk volume between a subsurface anda given oil-water contact, the highest spill point, or the depth at a particularlocation. The objective is then to determine the probability distribution ofH. This is most generally done through a sampling approach. This entailsgenerating a set of independent realizations from the stochastic model for[Z(x)jZobs = zobs], denoted byf[Z(x)jZobs = zobs]i; i = 1; : : : ; sg:Inserting each realization into h(�) give a setfHi = h ([Z(x)jZobs = zobs]i) ; i = 1; : : : ; sgwith empirical distribution approaching the sought probability distributionas s increase. Thus, from this set, the stochastic properties of H is easilyinferred. The number of realizations needed, depends on the objective; toobtain a reliable estimate for the expectation or median requires a modest swhile reliable estimates for variance or large quantiles require a much larger s.Note however, that the empirical distribution is unbiased for any s, it is theprecision that su�ers under small s.The sampling approach outlined above requires that it is possible to sim-ulate realizations of the conditional Gaussian random function [Z(x)jZobs =zobs]. This means that one must be able to obtain realizations f[Z(xl)jZobs =zobs]; l 2 LDg where LD is a grid covering D. In most applications the numberof nodes in LD exceed 104 which means that traditional stochastic simula-tion techniques for multi-Gaussian random variables fail. Thus, approximatealgorithms must be used.Analytical Prediction | KrigingThe sampling approach outlined above applies to any function h(�). For certainclasses of functions however, analytical solutions are possible. The simplestcases appear when h(�) is linear; for instanceH = [Z(x0)jZobs = zobs]; point value,H = a+ b[Z(x0)jZobs = zobs]; linear combination,H = ZD w(u)[Z(u)jZobs = zobs] du; spatial average,H = @[Z(u)jZobs = zobs]@ui ; derivative.Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 7All these H's are Gaussian random variables with expectation and variancesdeduced from the expectation and covariance function of [Z(x)jZobs = zobs].The �rst case is of particular interest; it provides the probability distribu-tion of Z(x) at a location x0 given the observations. For the depth conversionexample this is the probability distribution for the depth to the subsurface atan arbitrary location x0 2 D. The distribution is Gaussian so it su�ces toobtain the expectation and the variance for a full account of the probabilitydistribution.First assume that m(x) is known, that is, � are known numbers. Thecentered observations are zobs � F�, where Fip = fp(xi). Since Z(x0) and theobservation vector Zobs are n+1 multi Gaussian variables, well known formulasfor the conditional expectation and variance applies. The result isEfZ(x0)jZobs = zobsg = fT (x0)� + kT (x0)K�1(zobs � F�)(2.3) VarfZ(x0)jZobs = zobsg = �2(x0)� kT (x0)K�1k(x0);(2.4)where the vector k(x0) and the matrix K arek(x0) = CovfZ(x0);Zobsg = CovfZ(x0);Zobs � F�gK = VarfZobsg = VarfZobs � F�g :The predictor (2.3) is commonly called the simple kriging predictor (Journel& Huijbregts 1978, Cressie 1991) whereas the covariance matrix K is calledthe kriging matrix.Consider now the case where the expectation is given as a linear trend (2.2)where the random vector � has a prior P -dimensional Gaussian distribution:� � NP (�0;�0). The corresponding result can be written asEfZ(x0)jZobs = zobsg = fT (x)�0 + kTB(x0)K�1B (zobs � F�0)(2.5)(2.6) VarfZ(x0)jZobs = zobsg= �2(x0) + fT (x0)�0f(x0)� kTB(x0)K�1B kB(x0);where the Bayesian covariance vector and kriging matrix arekB(x0) = CovfZ(x0);Zobsg = k(x0) + fT (x0)�0FTKB = VarfZobsg = K+ F�0FT :The predictor (2.5) is called the Bayesian kriging predictor (Omre & Halvorsen1989). It allows prior believes on the coe�cients � to be incorporated throughthe choice of the prior expectation, �0, and the prior covariances, �0.In the limit �0 ! 0, that is, the prior information is exact, the simplekriging predictor appears. The opposite limit: �0 !1 (i.e. ��10 ! 0), theignorant prior, providesEfZ(x0)jZobs = zobsg = fT (x0) b� + kT (x0)K�1(zobs � Fb�)(2.7)Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



8 Petter Abrahamsen and Henning Omre ECMOR IV(2.8) VarfZ(x0)jZobs = zobsg= �2(x0) + f�T (x0) b�f�(x0)� kT (x0)K�1k(x0);where f�(x0) = f(x0)�kT (x0)K�1F, and the generalized least squares estimateand estimation covariances for � areb� = (FTK�1F)�1FTK�1zobs; and b� = (FTK�1F)�1:(2.9)The predictor (2.7) is called the universal kriging predictor (Journel & Hui-jbregts 1978, Ripley 1981, Cressie 1991).The conditional expectations (2.3), (2.5), or (2.7) respectively, are the bestprediction of Z(x0) at location x0. By varying x0 over D in the depth conver-sion example, the best pointwise predicted subsurface is obtained:fEfZ(x)jZobs = zobsg ;x 2 DgThe corresponding prediction variances given by (2.4), (2.6), or (2.8) respec-tively provides corresponding error maps given asfVarfZ(x)jZobs = zobsg1=2 ;x 2 Dg:Whether to use simple, Bayesian, or universal kriging depends on the gen-eral experience with the variable under study, on the number of parameters inthe trend, and on the number of data. If the trend is known simple krigingprovides the obvious method. If the number of data is small and experiencerecommends the use of a trend model including several parameters, Bayesiankriging provides a robust and 
exible method. If the number of data is largecompared to the number of parameters, universal kriging gives good predic-tions without requiring any prior believes to be speci�ed.Example 2.4 As an illustration a 5.5 kilometer cross-section of a geological domeobserved in three wells are considered. The trend model is based on observed seismictravel times and is similar to the model in Example 2.2. Figure 2.3(a) shows theprior guess on the trend. Figures 2.3(b), (c), and (d) show predictions using simple,Bayesian, and universal kriging respectively. A spherical correlation function with3000 meter correlation length has been used. For simple kriging the trend is assumedknown and is taken equal to the expectation of the prior guess. For the Bayesianapproach the prior guess is a suggestion on the trend of the subsurface with precisiongiven by the prior variance. For the universal kriging approach, the prior guess isignored. The three well data are hardly enough for estimating the accelerationparameter, v1, so the universal kriging prediction is unreliable away from the wells.On the other hand the simple kriging prediction assumes a known trend model whichis hardly realistic, so the associated prediction errors are to small. The Bayesianapproach is a reasonable compromise; the acceleration parameter is mainly de�nedby the prior guess while the v0 parameter is properly estimated from the data. Sincethe model parameters, (v0; v1), have physical interpretations, prior believes on theirvalues are usually present. This justify the use of a Bayesian approach. �Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 9(a) Prior guess: (b) Simple kriging:
(c) Bayesian kriging: (d) Universal kriging:
Figure 2.3: Cross sections of predicted subsurfaces. Figure (a) shows the prior guesswith uncertainty bounds. Figures (b), (c), and (d) are predictions obtained usingsimple, Bayesian, and universal kriging respectively. Error bounds are one standarddeviation.3 Model ExtensionsIn the previous section depth conversion of seismic travel times was used asan illustration. In this section it will be shown how the stochastic model for asubsurface can be extended to:- include observation errors,- model the velocity �eld as a Gaussian random function and use observa-tions of the velocity �eld for depth prediction,- use gradient data from dip meters to improve depth predictions,- model multiple subsurfaces consistently.The extended models will consist of a collection of correlated Gaussian randomfunctions and the kriging techniques described in the previous section will bemodi�ed to cope with this. Simple kriging conditioned on data from additionalrandom functions is commonly called cokriging. Bayesian and universal krig-ing can also be modi�ed to include observations from a collection of randomfunctions, so appropriate names could be Bayesian and universal cokriging.The contents of this section is speci�c to the application of seismic depthconversion but the basic ideas are useful in many contexts.Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



10 Petter Abrahamsen and Henning Omre ECMOR IV
Figure 3.1: Similar to Figure 2.3(d) ex-cept that the middle observation is as-sumed inaccurate.Observation ErrorsObservations of random functions are occasionally corrupted by errors. Con-sider a set of n observations organized in a vectorZ�Tobs = ZT + �T = [Z(x1) + �(x1); : : : ; Z(xn) + �(xn)]; xi 2 D;where �(xi) are multi Gaussian measurement errors independent of Z(x) withvanishing expectation. Observing thatCovfZ(x0);Z�obsg = CovfZ(x0);Zobsg = k(x0)VarfZ�obsg = VarfZobsg+Varf�g = K+K�shows that the expectations and variances conditioned on the noise corrupteddata are obtained by substitutingK byK+K� in the predictors and predictionvariances, (2.3) through (2.8). The simplest example occurs for independentmeasuring errors where K� = diag(�2err(x1); : : : ; �2err(xn)), with �2err(xi) beingthe variance of the measuring error at xi. Thus, the measuring error is sim-ply introduced by adding the corresponding variances to the diagonal of thekriging matrix. The consequence of introducing measuring errors is that thekriging predictors no longer interpolate the observations, and moreover, thatthe prediction errors are nonzero at these locations.Example 3.1 Assume that the middle observation in Example 2.4 for some reasonis inaccurate. Figure 3.1 show a prediction using universal kriging. This �gureshould be compared to Figure 2.3(d). It is seen that the prediction fails to honourthe middle well observation and moreover, the prediction error is nonzero. �Velocity ObservationsIn the previous section the interval velocity was modelled using a trend formedby a linear sum of known functions multiplied by unknown or partially knowncoe�cients such as the model in Example 2.2. Such a trend is a rough approx-imation to the real interval velocity �eld. A more realistic model is to add astochastic component describing local variations in velocityV (x) = mV (x) + �V (x)"V (x);(3.1)Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 11where mV (x) = gT (x)� is, as previously, a linear trend. Moreover, "V (x) isa standardized Gaussian random function accounting for variations not prop-erly modelled by the trend, and �2V (x) is the associated laterally dependentvariance. To obtain a model for the depth to a subsurface an additional modelfor the travel times is needed:T (x) = t(x) + �T (x)"T (x);where the interpreted travel times, t(x), are assumed to be a proper trendfor the `true' travel time, T (x). Now the residual, �T (x)"T (x), is supposedto account for interpretation errors and the smoothing in the seismic signals.The depth model becomes:Z(x) = V (x)T (x) = �mV (x) + �V (x)"V (x)��t(x) + �T (x)"T (x)�:To make this expression more tractable two modi�cations will be made. Theproduct involving "V (x)"T (x) is ignored. This is justi�ed provided the trendsare signi�cantly larger than the residuals. Secondly, mV (x) �T (x)"T (x) is re-placed by a residual �Z(x)"Z(x) which is assumed to consist of a knownvariance, �2Z(x), and a standardized Gaussian random function, "Z(x) inde-pendent of "V (x). The resulting expression for the depth readsZ(x) = mV (x) t(x) + [�V (x) t(x)]"V (x) + �Z(x)"Z(x):(3.2)This expression is in principal equivalent to (2.1). The depth model includesthree parts: the velocity trend multiplied by the interpreted travel times, aresidual caused by anomalies in the velocity �eld, and a residual caused byinaccuracies in the interpreted travel time map.At this point a model for the velocity (3.1) and a model for the depth(3.2) have been established. Both models are Gaussian random functions withproperly de�ned expectations and covariance functions and �ts into the krigingframework outlined in the previous section. The new feature is that the modelsare correlated through the common velocity trend, mV (x), and the commonresidual function, "V (x). The dependency is given by the cross covariances:CovfZ(x); V (x0)g = [�V (x) t(x)]�V (x0) �V (x;x0);or assuming � are multi Gaussian random variables, the cross covariance areCovfZ(x); V (x0)g = t(x)gT (x)�0 g(x0) + [�V (x) t(x)]�V (x0) �V (x;x0);where �0 is the speci�ed prior covariance matrix of �.Assume there exists observations of depth and observations of interval ve-locities: ZTobs = [Z(xz1); : : : ; Z(xzn)] and VTobs = [V (xv1); : : : ; V (xvm)]:Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



12 Petter Abrahamsen and Henning Omre ECMOR IVThe position of the observations are arbitrary but usually velocity observationsare available at a subset of the velocity observations. The objective is to assessthe probability distribution of the conditional Gaussian random functions[Z(x)jZobs = zobs;Vobs = vobs] and [V (x)jZobs = zobs;Vobs = vobs]:Prediction of Z(x0) given the available data are of particular interest. Assumethe trend, mV (x), is known and consider the centered observations zobs�F�,where Fip = gp(xzi ) t(xzi ) and vobs � G�, where Gip = gp(xvi ). Since Z(x0),Zobs, and Vobs are a set of n + m + 1 multi Gaussian random variables, theformulas for conditional expectation and variances give(3.3) EfZ(x0)jZobs = zobs;Vobs = vobsg= mV (x0) t(x0) + kT (x0)K�1 "zobs � F�vobs �G�#(3.4) VarfZ(x0)jZobs = zobs;Vobs = vobsg= [�V (x0) t(x0)]2 + �2Z(x0)� kT (x0)K�1kT (x0);where the covariance vector and kriging matrix now readsk(x0) = Cov�Z(x0); �ZobsVobs�� = �CovfZ(x0);Zobs � F�gCovfZ(x0);Vobs �G�g�K = Var��ZobsVobs�� = � VarfZobs � F�g CovfZobs � F�;Vobs �G�gCovfVobs �G�;Zobs � F�g VarfVobs �G�g � :Similar expressions for the velocities are obtained by using the trend mV (x) in(3.3) and replacing Z(x0) by V (x0) in the covariance vector k(x0). Comparing(3.3) and (3.4) to (2.3) and (2.4) reveals that the equations for simple krigingare very similar; the di�erence is that the kriging matrix and covariance matrixmust be expanded to accommodate the cross covariances.It is straight forward to extend the above formalism to Bayesian or uni-versal kriging. Just as k(x0) and K were expanded to accommodate the addi-tional cross covariances, f(x0) and F must be expanded to accommodate thetrend functions at all the locations of the observations. For more details seeAbrahamsen (1993) from where the following example is taken.Example 3.2 To illustrate the properties of cokriging consider a velocity functionwith a constant unknown trend, mV (x) = v0. Three velocity and four depth obser-vations are available. Figures 3.2(a), (b), and (c) show cross sections of predictionsof the velocity function conditioned on velocity observations alone, depth observa-tions alone and all seven observations. The velocity residual has been chosen tohave a exponential correlation function with � = 2, giving smooth bell-shaped formsaround the observations. Bayesian cokriging were used. The `hump' on the rightside of Figures 3.2(b) and (c) are caused by the depth observation with no accom-panying velocity observation. From Figure 3.2(b), where velocity observations areignored, it is seen that the depth data carry valuable information on the shape ofNorwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 13(a) Only velocity observations: (b) Only depth observations:
(c) Depth and velocity observations:

Figure 3.2: Cross sections of Bayesian velocity predictions conditioned on velocity(a), depth (b), or all observations (c). Velocity along the vertical axis and lateralposition in kilometers along the horizontal axis.the velocity function. Comparing Figure 3.2(a) to 3.2(c) reveals that using depthdata has minor in
uence in regions where velocity data are already present but sig-ni�cant in
uence in regions where velocity observations are missing. This is due tohigh correlations between depth and velocity observation in the same location. Thisis a sign of redundancy in the data. �Dip ObservationsOccasionally reliable dip meter observations are available. They carry infor-mation on the gradient of the subsurface, that is, the slope and the directionof the slope. When considering the gradient of a Gaussian random functionit is tacitly assumed that the gradient actually exist. Assuming a smooth ex-pectation, m(x), and variance, �2(x), the existence of the gradient is relatedto the behaviour of the correlation function, �(x;x0), as x ! x0. A su�cientcondition is that [Cram�er & Leadbetter (1967, p. 84) and Abrahamsen (1994b,p. 25)] limx!x0 @2�(x;x0)@xi @x0j = �nite for all i; j = 1; : : : ; d.(d = 2 for subsurfaces.) This puts strong restrictions on the correlation func-tion. For instance the exponential correlation functions in Example 2.1 do notcompile to this requirement unless � = 2. Thus, only display (d) in Figure 2.1Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



14 Petter Abrahamsen and Henning Omre ECMOR IVpossess di�erentiable curves; this should not come as a surprise considering theappearance of the �gures. Display (a{c) are too rough even though they arecontinuous everywhere. Several other correlation functions give di�erentiableGaussian random functions; see Abrahamsen (1994a) for some examples.For a subsurface Z(x) de�ned on R2 the associated gradient �eld, _Z(x),is a two-dimensional vector in R2 de�ned by its components in a Cartesiancoordinate system: _Zi(x) = @Z(x)@xi ; i = 1; 2:Assuming EfZ(x)g = m(x), then_mi(x) = En _Zi(x)o = @m(x)@xi ; i = 1; 2:Further, assume that the covariance function, C(x;x0) = CovfZ(x); Z(x0)g =�(x) �(x0) �(x;x0), is simultaneously di�erentiable in x and x0, that is, Z(x) ismean square di�erentiable. Then, the cross-covariance function between Z(x)and a component of _Z(x) is a vector de�ned by the components_Ci(x;x0) = CovnZ(x); _Zi(x0)o = @@x0iC(x;x0); i = 1; 2:The covariance functions between components of _Z(x) are�Cij(x;x0) = Covn _Zi(x); _Zj(x0)o = @2@xi@x0jC(x;x0); i; j = 1; 2:The matrix �Cij(x;x0) is a second rank tensor called the covariance tensor ofthe gradient �eld, whereas the components of the vector, _Ci(x;x0), form a �rstrank tensor.Assume there exist observations of depth and dip in a number of wells:ZTobs = [Z(xz1); : : : ; Z(xzn)] and _ZTobs = [ _Z1(x _z1); _Z2(x _z1); : : : ; _Z1(x _zm); _Z2(x _zm)]:The position of the observations are arbitrary but usually dip observationsare available in a subset of the wells. Since Z(x0), Zobs, and _Zobs are a setof n + 2m + 1 multi Gaussian random variables, the formulas for conditionalexpectation and variances apply once more to give the predictor:EnZ(x0)jZobs = zobs; _Zobs = _zobso = m(x0) + kT (x0)K�1 "zobs � F�_zobs � _F�#VarnZ(x0)jZobs = zobs; _Zobs = _zobso = �2(x0)� kT (x0)K�1kT (x0);where the covariance vector and kriging matrix now reads:k(x0) = Cov�Z(x0); �Zobs_Zobs�� = "CovfZ(x0);Zobs � F�gCovnZ(x0); _Zobs � _F�o#K = Var��Zobs_Zobs�� = 24 VarfZobs � F�g CovnZobs � F�; _Zobs � _F�oCovn _Zobs � _F�;Zobs � F�o Varn _Zobs � _F�o 35 :Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 15(a) Depth data:
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(b) Depth and dip data:
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(c) Depth data:
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(d) Depth and dip data:
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o o oFigure 3.3: Cross sections of predictions conditioned on depth and dip data. Figures(a) and (b) show predictions as solid lines and the dashed lines are the `true' function.Figures (c) and (d) show the corresponding prediction errors as solid lines whereasthe dashed lines are the di�erence between the prediction and the true function(absolute value).All these covariances are given by the covariance function, C(x;x0), the cross-covariance function, _Ci(x;x0), and the covariance tensor, �Cij(x;x0).Conditioning on gradient data is just another variety of cokriging. Thespecial feature is that all covariance functions are uniquely determined bythe basic covariance function C(x;x0). Extensions to Bayesian and universalkriging predictors are straight forward. For more details consult Abrahamsen(1994a). An example of predicting a subsurface is found in Renard & Ru�o(1993), but they do not use the travel times nor do they compute the predictionerror.Example 3.3 Consider a standardized Gaussian random function with the expo-nential correlation function having roughness parameter � = 2. This function hasbeen observed at three locations. Figure 3.3(a) show a prediction using these threedata and Figure 3.3(c) show the associated prediction error. Assume further thatthe derivatives or dip has been observed at the same three locations. Figure 3.3(b)show a prediction using the three depth and three dip data. Figure 3.3(d) showthe corresponding prediction errors. The �gures mainly speaks for them selves butNorwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



16 Petter Abrahamsen and Henning Omre ECMOR IVnote in particular the e�ect of two near observations. In Figure 3.3(a) they mimica combination of a depth and a dip data, whereas in Figure 3.3(b) they mimic acombination of a depth, a dip, and a second order derivative data. �It is seen that observations of dip potentially have strong predictive power.It should however be mentioned that the correlation function used in thisexample describe the smoothest possible Gaussian random function. For realsubsurfaces this is unrealistic so other correlation functions must be used.These will in comparison reduce the importance of dip information.Multiple Subsurface ModelIn most applications of depth conversion several subsurfaces are considered.Thus, a consistent simultaneous description of several subsurfaces are calledfor. Some of these could be seismic re
ectors whereas others are invisible onthe seismics and must be modelled by using geological knowledge. More detailsare found in Abrahamsen (1993).The main idea is to use a stochastic description of each interval above thedeepest subsurface. The stochastic description of the thickness of, say intervall, will contain a term accounting for the trend and a residual including astandardized Gaussian random �eld:�Zl(x) = ml(x) + �l(x)"l(x):The model for the depth to subsurface l is Zl(x) = Pli=1�Zi(x): Now considera subsurface k and a deeper subsurface l, that is, l > k. These subsurfacesare correlated since Zl(x) = Zk(x) +Pli=k+1�Zi(x), i.e., they have the trendsand residuals describing Zk(x) in common. Thus, a prediction of subsurfacel must be conditioned on all well observations, including depth observationsof subsurfaces above and below. A major advantage of this approach, com-pared to the traditional, where each interval is treated separately, is the abilityto include deviating wells consistently, and moreover, the ability to computerealistic prediction errors for all subsurfaces.Simple, Bayesian, and universal kriging predictors using all available dataare established in the same way as before. An example illustrates the practicalconsequences:Example 3.4 Consider two seismic re
ectors. Depth observations from three ver-tical wells and one deviating well are available. Figure 3.4(a) show predictionsperformed in the traditional way; The upper subsurface is conditioned on the fourobservations from this subsurface. Then the interval is predicted given the predictionof the upper subsurface and the observations of the interval thickness. Figure 3.4(b)show predictions of the two subsurfaces conditioned on all the data. Note in partic-ular the ability to assess the uncertainty around the deviating well correctly. It isalso seen that the upper subsurface is modi�ed by the rightmost observation of thelower subsurface. �Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 17(a) Independent: (b) Correlated:
Figure 3.4: Cross-section of prediction of two correlated subsurfaces. Figure (a)shows the traditional approach where the interval is predicted independently of theupper subsurface. Figure (b) shows predictions conditioned on all observations.Depth along the vertical axis and lateral position in kilometers along the horizontalaxis.When considering seismic re
ectors, the models should be simpli�ed byignoring the errors in the travel times above subsurface l. This approximationis excellent provided the velocity contrasts from layer to layer are moderate.4 Parameter InferenceFor Gaussian random functions three classes of model parameters are de�ned:(i) trend parameters, e.g. �, (ii) scale of variance, �(x), and (iii) parameters inthe correlation function, e.g. � andR. Moreover, the general form of correlationfunction has to be speci�ed. In this section only a brief outline of the problemof estimating these parameters from data will be outlined. Some importantreferences will be given.Inference about the parameters are complicated since the number of ob-servations usually is small, the observations are occasionally inaccurate, theyare usually correlated, and they are frequently preferentially sampled. Thus,the assumptions on which traditional inference is based are normally violated.Large parts of the inference theory of spatial models remains to be developed.The geostatistical tradition has developed many rules of thumb for assessingparameter values. Journel & Huijbregts (1978), Isaaks & Srivastava (1989),and Cressie (1991) provides a good overview. Attempts on applying moreclassical statistical criteria in the estimation has also been made. Mardia& Marshall (1984) used a maximum likelihood estimator and reported biasproblems although multi modality mixed with numerical instability could havebeen the cause. The sensibility of using maximum likelihood was challengedby Warnes & Ripley (1987). In Hjort & Omre (1993) a maximum pseudo-likelihood approach like Besag (1974), was suggested, and a maximum quasi-likelihood procedure was developed in some detail. An elegant procedure fortesting the signi�cance of parameters in the spatial correlation function wasNorwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



18 Petter Abrahamsen and Henning Omre ECMOR IVproposed by Switzer (1984).The Bayesian formulation of the problem seems to simplify the inference ofparameters. Kitanidis (1986), Omre (1987) Omre & Halvorsen (1989), Hjort& Omre (1993), and Handcock & Stein (1993) all developed posterior dis-tributions for the model parameters. To reach the parameters in the spatialcorrelation function, numerical integration is occasionally required.5 Simulation of Random FunctionsThe challenge is to generate a realization of f[Z(x)jZobs = zobs]; x 2 Dgaccording to the speci�ed model. In practice the Gaussian random functionhas to be represented on a grid, LD, covering D. Hence, the problem is tosimulate a Gaussian random vector. This may appear simple since all Gaus-sian random vectors can be expressed as linear combinations of independentGaussian random variables. The coe�cients in the linear combination are eas-ily obtainable from the cholesky decomposition of the covariance matrix of therandom vector. However, the problem is the dimensionality since the grid, LD,may contain 107 elements. So in practice, algorithms based on approximationsmust be used.Traditionally, conditional simulation has been based on the following de-composition:[Z(x)jZobs = zobs]i= EfZ(x)jZobs = zobsg+ Yi(x)� EfY (x)jYobsig ; i = 1; : : : ; s;where Yi(x) is a realization of a Gaussian random function Y (x) having thesame variance and correlation function as Z(x), and Yobsi being a vector ofobservations from Yi(x) taken at the locations of Zobs. For a known expec-tation, the simple kriging predictor and the associated prediction error areorthogonal. From this fact it is easily proven that the above expression givethe correct distribution.The decomposition above requires only a non-conditional Gaussian randomfunction to be simulated, i.e. Yi(x). Many approaches for this have been pro-posed; turning bands (Matheron 1973, Christakos 1992), frequency-domain(Borgman, Taheri & Hagan 1984), and sequential algorithms (Omre, S�lna& Tjelmeland 1993). Another procedure for simulating conditional Gaussianrandom functions on large lattices follows from the factorization of the multiGaussian pdf into univariate conditional Gaussian pdf's. A conditional simula-tion algorithm using this is described by G�omez-Hern�andez & Journel (1993).6 Closing RemarksThe methods described have been successfully applied to several case studies.They are mainly extensions to methods widely used within the petroleumNorwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



ECMOR IV Random Functions and Geological Subsurfaces 19industry.There are several advantages of using a formalized stochastic model fordescribing geological subsurfaces:� Model assumptions are fully speci�ed so results can be reproduced andconsequences of the model can be checked.� Di�erent types of data are included consistently adhering to varying pre-cision.� Prediction errors take into account the complicated relationships betweendi�erent subsurfaces and interval velocity �elds. Thus, prediction er-rors are correctly calculated and they are realistic provided the speci�edmodel is realistic.� Introducing new observations requires no adjustments of the models, |the conditional model will automatically honour new observations.� Observations from deviating wells and interval velocity observations arehandled correctly according to the model.Moreover, using Gaussian random functions and linear trend models give e�-cient calculations since the conditioning is done analytically. Using non-lineartrend models requires numerical optimization whereas using a non-Gaussianresidual could imply an optimization criteria di�erent from the least squarescriteria implicitly used in the previous sections. The conditional expectationsand variances would be replaced by numerical integrals that could be evaluatedat the cost of extensive computer resources.In the search for a more accurate description of natural phenomena, im-proved understanding of the physics governing the relationships between mea-surements and the phenomena itself is the key. Stochastic models should ide-ally describe a small gap between the state of the art deterministic descriptionand the phenomena itself. Thus, a future challenge is to include more precisedeterministic descriptions of the phenomena to minimize the stochastic partsof the model. The role of the stochastic part of the model is twofold: it reducesuncertainty by prescribing optimal ways of estimating model properties, andit quanti�es the uncertainties so that �nancial risks can be studied.AcknowledgementsThe work of Petter Abrahamsen was supported by a research fellowship fromThe Research Council of Norway. The authors bene�tted signi�cantly fromfacilities and computer programs at Norwegian Computing Center.
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