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Introduction

This assignment contains problems related to geostatistical processes and
Gaussian random fields (GRF). We recommend using R for solving the prob-
lems, and relevant functions can be found in the R libraries geoR, akima and
fields.

Problem 1: One-dimensional Gaussian Random Fields
(GRF)

Let {Y (s) : s ∈ [1, 50] ⊂ R1 } denote the true temperature (◦C) along a
50 km long road. We assume that the temperature along the road can be
modeled as a stationary 1D GRF with the following properties:

E{Y (s)} = µ = 20

V ar{Y (s)} = σ21

Corr{Y (s), Y (s+ h)} = ρY (h) = CY (h)/σ
2
1,

where CY (h) is a covariance function and where the micro-scale variance is
zero (σ20 = 0). Let D = [1, 50] be discretised in LD ∈ {1, 2, . . . , 50} and
define the discretised GRF {Y (s); s ∈ LD}.

a) Assume that the covariance function CY (h) is either Matérn with smooth-
ness parameter 1 (ν = 1) or exponential. Display the exponential and the
Matérn correlation function on D for different ranges θ1 between 5 and 25.
You can use the functions cov.spatial() and/or Matern() from the libraries
geoR and fields.
What does the range tell us about the GRF?
Develop the relation between the correlation function and the variogram
function.
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b) Simulate some realisations of the GRF on LD for different covariance
functions. Choose some variances σ21 and ranges θ1, and show/explain how
your choice of parameters affects the resulting simulated GRF.

Assume that we measure the temperature Y (s) at locations s∗ ∈ {10, 25, 30}
in LD. The observed temperatures at these locations are noisy versions of
the true, underlying temperatures, and we write the observations as

Z(s∗) = Y (s∗) + ε(s∗) s∗ ∈ {10, 25, 30} (1)

where the measurement errors ε(·) are independent and identically distributed
as N (0, σ2ε ). Further, assume that Y (s∗) and ε(s∗ + h) are independent for
all h.

c) Write down the data model and the process model for temperature.

d) Consider the simulations from b) and choose a realisation that could be
a realistic representation of the temperature differences along a 50 km long
road. Assume that σ2ε = 1, and use the simulated values at s∗ ∈ {10, 25, 30}
to create a set of observations (1).

Specify the pdf for the conditional discretised GRF given the observations,
i.e find the distribution [Y |Z] where Y = (Y (1), ..., Y (50))′, and where
Z = (Z(10), Z(25), Z(30))′. Compute the expected values E{Y (s)|Z} and
the variances values V ar{Y (s)|Z} for each s in LD, and display the results
as an expectation function with associated 2σ intervals on either side.

e) Simulate 50 realisations of the conditional discretised GRF [Y |Z]. Dis-
play the realisations in one figure. For each s ∈ LD compute the average
and the empirical variance based on the 50 realisations. Display the results
as an average function with associated estimated 2σ intervals on either side.
Compare the results with the results in d) and comment.

Problem 2: Spatial Prediction by Kriging

This problem is based on observations of terrain elevation which are available
on the web site of the course in the file topo.dat. The 52 observations are in
a domain D = (0, 315)× (0, 315) ⊂ R2 .

a) Display the observations in various ways. The functions interp(), contour()
and image.plot() in the R libraries akima and fields may be useful.
Comment the results.

Let the terrain elevation over D be modeled by the GRF {Y (s); s ∈ D ⊂ R2}
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with
E{Y (s)} = x(s)′β

Cov{Y (s), Y (s+ h)} = CY (||h||)
,

where x(s) = (x1(s), ..., xp(s))
′ is a p-dimensional vector of known functions

of s ∈ D, and β = (β1, . . . , βp)
′ is a vector of unknown weights.

Let the vector of observations be denoted Z = (Z(s1), . . . , Z(s52))
′.

b) Show how you derive the the universal kriging predictor and prediction
variance at an arbitrary location s0 ∈ D. (You don’t need to solve the
resulting optimisation problem.)

Let the reference variable s ∈ D ⊂ R2 be denoted s = (sv, sh), set p = 6 and
define the set of known functions x(s) to be all polynomials skvslh for (k, l) ∈
{(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}. Further, let the covariance function
CY (||h||) be of exponential form with variance 2500 and range parameter
100.

c) Write down the resulting p-dimensional vector x(s) and the expected
value of Y (s). How can we interpret this model?

Use the function krige.conv() to compute the universal kriging surface with
associated kriging variance in a (316× 316) grid covering D.
Hint : Change trend.d and trend.l in krige.conv() to specify the form of
E{Y (s)}. The function expand.grid() may also be useful.
Display the results and comment.

d) Consider grid node s0 = (100, 100). What is the probability that the ele-
vation is larger than 700 m at this location? Further, compute the elevation
for which it is a 90 % probability that the true elevation is below it.

e) Add noise to the elevation data in topo.dat. You can assume that the
noise is independent of the observations and distributed as N (0, σ2ε ). Repeat
the procedure in c) with the noisy dataset, first with σ2ε = 5, then with
σ2ε = 15. Compare the results and comment/explain.

Problem 3: Parameter estimation

Assume that the temperature (◦C) in a region of size 30 km × 30 km can be
modeled as a stationary GRF {Y (s); s ∈ D ⊂ R2} with D∈[(1, 30), (1, 30)],
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and with

E{Y (s)} = µ = 12

V ar{Y (s)} = σ21 = 2

Cov{Y (s), Y (s+ h)} = σ21 exp

{
−||h||
θ1

}
= 2 exp

{
−||h||

15

}
.

Discretise D into a grid LD of size 30× 30.
a) Describe how the temperature in the study region is distributed based on
the parameter values: What is the interpretation of the parameters µ, σ21
and θ1?
Specify the requirements for a valid spatial covariance function, and use
R to compute the covariance matrix of the discretised GRF on LD. The
functions expand.grid() and rdist() may be useful. Use the covariance matrix
to generate a simulation of the temperature on LD. Display the realisation.

b) Compute the empirical variogram based on the full realisation. You can
use the function variog(). Comment the results.

c) Use the realisation of the GRF from a) and draw 36 locations randomly
from LD. Compute the empirical variogram estimate based on these 36
observations. (We assume perfect observations without measurement noise.)

Assume an exponential variogram function with variance σ21 and range pa-
rameter θ1. Estimate σ21 and θ1 by maximum likelihood based on these 36
observations. Use the function likfit().
Display the variogram estimates above together with the true one.
Comment on the results.

d) Repeat the procedure in c) with 9, 64 and 100 observations.
Comment on the results.
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