
TMA4250 Spatial Statistics
Assignment 2: Point Processes

IMF/NTNU

February 2017

Introduction

This assignment contains problems related to spatial Point Processes. R can
be used for solving the problems and relevant functions can be found in the
R library spatial.

Problem 1: Poisson Point Process (PPP)

Consider the point process {si ∈ Ds ⊂ R2 ; i = 1, . . . , Z(Ds)} with Ds =
(0, 1) × (0, 1). Assume that the point process is an inhomogenuous Poisson
point process (PPP) with intensity function

λ(sv, sh) = µ exp{−(αsv + βsh)} ; s = (sv, sh) ∈ Ds

where θ = (µ, α, β) are model parameters.

a) The number of points in Ds, Z(Ds), is a random variable. Write down the
distribution [Z(Ds)|λ(·)]. Develop an expression for the expected number of
points in Ds, i.e find E{Z(Ds)|λ(·)}. What is the variance Var{Z(Ds)|λ(·)}?

b) Set the model parameters to θ = (200, 2, 1) in the intensity function.
Generate realisations of [{s1, ..., sZ(Ds)}|Z(Ds), λ(·)] for Z(Ds) = 20, 50 and
200 respectively by using a rejection sampling algorithm.
Visualize the results and comment.
Use the option par(pty="s") to plot the points on a square.

c) Generate 10 realisations of [Z(Ds), {s1, ..., sZ(Ds)}|λ(·)] for θ = (200, 2, 1).
Visualize the results and comment.

d) Assume that you have generated one realisation of the PPP. Specify the
likelihood for the PPP. Use this to develop expressions for the maximum
likelihood estimates for the parameters α, β and µ.
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Choose one of the realisations in c). Compute the numerical values of the
maximum likelihood estimates for α, β and µ given the points in the chosen
realisation. The function optim() may be useful for maximizing the likeli-
hood numerically.
Compare the estimates of α, β and µ with the true values, and visualize
the estimated and true intensity function by using the function image.plot().
Comment the results.

Problem 2: Neymann-Scott Point Process (N-SPP)

In this exercise you are going to explore the properties of a Neymann-Scott
Point Process. A Neymann-Scott PP can be used to model clustered point
processes. It is defined by a mother-model and a child-model: The mother-
model is a statistical distribution that specifies the number of clusters and
their locations in our spatial domain. The child-model specifies the point
pattern around each of the clusters.

Consider a Neymann-Scott PP (N-SPP) {si ∈ Ds ⊂ R2 ; i = 1, . . . , Z(Ds)}
with Ds = (0, 1)× (0, 1). Let the mother-model be given by a homogeneous
Poisson PP with parameter λm. Further, let the child-model be specified as
follows: The number of points is given by a Poisson distribution with param-
eter λc, while the point locations are given by an uncorrelated bi-Gaussian
distribution with covariance matrix Iσ2. (These model assumptions defines
the so called Thomas PP.)

a) Vary the set of model parameters and generate realisations of the N-SPP.
Explain how you perform the simulations by writing a simple pseudocode.
Pay particular attention to boundary-problems in your simulation: You need
to find a way to deal with points falling outside the spatial domain Ds.
Include some of the realisations in your report. Describe the resulting point
patterns, and explain the relation between the realisations and the parameter
values of the mother- and child-model.

b) Use the function Kfn() in the R library spatial to compute the empirical
L-function for five extreme realisations from a). For this purpose, you need
the function ppregion() to specify the spatial domain.

The theoretical L-function for a Thomas PP is

L(h) =
√
h2 + (πλm)−1(1− exp{−h2/4σ2}),

where λm is the intensity of the mother-model, σ2 is the variance of the bi-
Gaussian distribution, and h is the distance from an arbitrary event. Display
the estimated and the theoretical L-function for five extreme realisations.
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Comment the results, i.e relate the shape of the L-functions to the point
patterns.

Problem 3: Strauss Point Process (SPP)

A Strauss point process can be used to model repulsion. Consider a Strauss
point process (SPP) {si ∈ Ds ⊂ R2 ; i = 1, . . . , Z(Ds)} with Ds = (0, 1) ×
(0, 1). Assume that the pdf, given the number of points Z(Ds), related to
this PP is:

[{s1, ..., sZ(Ds)}|Z(Ds), θ] = const× exp{−
Z(Ds)∑
i=1

Z(Ds)∑
j=1

ϕ(τij ; θ)}

with τij = |si − sj | being the euclidean distance between si and sj , and

ϕ(τij ; c, d) =

{
c if τij < d
0 else

a) How can you interpret the parameters c and d?

b) Set Z(D) = 50 and d = 0.1 and generate realisations of the SPP with
c = 0.01, 1 and 100 respectively. You can for example use a one-point up-
dating Metropolis-Hastings MCMC algorithm for making the simulations.
Show that the algorithm has converged for each value of c.
Visualize the results and comment.

Problem 4: Analysis of Point Patterns

Consider three real data point patterns in the R library MASS:

• biological cell data, available at cells.dat

• redwood tree data, available at redwood.dat

• pine tree data, available at pines.dat

Use the command data<-ppinit("file.dat") to load the data files.

a) Display the three point patterns and describe what you see. Try to relate
the point patterns to real processes in nature. Use google to find information
about the datasets.
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b) Compute the empirical L-function for each of the point patterns by using
the function Kfn().
Visualize the results and comment.

Specify the theoretical L-function for a homogeneous Poisson PP. Compare
the empirical L-function for each of the point patterns with the theoretical
L-function for a homogeneous Poisson PP.
Visualize the results and comment.

c) Take the number of points in each point pattern into account. Generate
100 realisations of a corresponding homogeneous Poisson PP, and compute
the empirical L-function for each realisation. Use the results to estimate
the expected L-function with associated 0.95 confidence intervals. Use the
results to test informally whether each of the point patterns in cells.dat,
redwood.dat and pines.dat could come from an underlying Poisson PP.
Visualize the results and comment.

d) Consider a homogeneous Poisson PP in R2 with intensity λ. Derive the
distribution of the distance r from one arbitrary location in our spatial do-
main to the closest data point.
Hint: Consider a disc with radius r and with its origin at this arbitrary lo-
cation.

For a homogeneous PPP the pdf of the distance r from an arbitrary location
to the closest datapoint has the same distribution as the distance from a
given datapoint to its closest neighbour. This pdf is called the r-function of
the point process.

Use the information above to perform the same procedure as in c), but
now by using the r-function of the homogeneous PPP: The pdf of the dis-
tance from a given point to its closest neighbour. The functions rdist() and
density() may be useful for computing an empirical r-function. As before,
use the results to test informally whether each of the point patterns could
come from an underlying homogeneous Poisson PP.
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