TMA4250 Spatial Statistics Assignment 3: Markov Random Fields

IMF/NTNU

March 2017

Introduction

This assignment contains problems related to Markov Random Fields (MRF). The R-package should be used in solving the problems and relevant functions can be found in the R library spatial.

Problem 1: Markov RF

This problem is based on observations of seismic data over a domain $\mathcal{D}_s \subset \mathbb{R}^2$. The objective is to identify the underlying lithology ({sand, shale}) distribution over \mathcal{D}_s .

The data are collected on a regular (75×75) grid $\mathcal{L}_{\mathcal{D}_s}$, and the seismic data are denoted $Z(s) : \{Z(s_i); s_i \in \mathcal{L}_{\mathcal{D}_s}\}$. The data are available in the R library MASS in the file *seismic.dat*.

Moreover, observations of the lithology distribution ({sand, shale}) in a geologically comparable domain $\mathcal{D}_c \subset \mathbb{R}^2$ are available. The lithology distribution is collected on a regular (66 × 66) grid $\mathcal{L}_{\mathcal{D}_c}$, with the same spacing as $\mathcal{L}_{\mathcal{D}_s}$, over \mathcal{D}_c . The observations with code 0 for sand and 1 for shale are available in the R library MASS in the file *complit.dat*.

Assume that the underlying lithology surface over \mathcal{D}_s can be represented by $\{Y(s); s \in \mathcal{D}_s \subset \mathbb{R}^2\}$ discretized into a lattice $\{Y(s_i) : s_i \in \mathcal{L}_{\mathcal{D}_s}\}$ with $Y(s_i) \in \{0, 1\}$ representing sand and shale respectively.

The seismic data stored in *seismic.dat* have uncertainty defined by:

$$Z(\boldsymbol{s_i})|Y(\boldsymbol{s_i}) = \begin{cases} 0.02 + \epsilon(\boldsymbol{s_i}) \text{ if } y(\boldsymbol{s_i}) = 0\\ 0.08 + \epsilon(\boldsymbol{s_i}) \text{ if } y(\boldsymbol{s_i}) = 1 \end{cases}; \boldsymbol{s_i} \in \mathcal{L}_{\mathcal{D}_s}$$

where $\epsilon(s_i)$ iid Gauss $(0, 0.06^2)$.

- a) Plot the two datasets *seismic.dat* and *complit.dat*.
- **b)** Consider a uniform prior model on Y(s), i.e.

$$[Y(\boldsymbol{s_i})] = Unif\{0,1\} \text{ for } \boldsymbol{s_i} \in \mathcal{L}_{\mathcal{D}_s}$$

Specify the data model and the process model for the lithology ({sand,shale}) at an arbitrary position $s_i \in \mathcal{L}_{\mathcal{D}_s}$.

Find the posterior distribution $[Y(s_i)|Z(s_i)]$ for $Y(s_i) \in \{0,1\}$. Simulate 10 realisations of this distribution on $\mathcal{L}_{\mathcal{D}_s}$ and visualize the realisations.

Derive expressions for the posterior mean $E\{Y(s_i)|Z(s_i)\}$ and the posterior variance $Var\{Y(s_i)|Z(s_i)\}$ and visualize the results. Compare these to the 10 realisations you made earlier.

Finally, use Maximum a posteriori estimation (MAP) to estimate the lithology distribution $Y(s_i)$ over $\mathcal{L}_{\mathcal{D}_s}$. Define the MAP-estimator for $Y(s_i)$, visualize the results and comment.

c) The Hammersley-Clifford Theorem and Brook's lemma allow us to express a MRF either through one multivariate pdf with respect to cliques (Gibbs formulation) or as a set of univariate conditional local pdf's with respect to neighborhoods (Markov formulation). The Gibbs formulation and the Markov formulation are equivalent.

Now, consider a new prior model for Y(s) with neighborhood system denoted by $\mathcal{N}(\cdot) : \{\mathcal{N}(s_k); s_k \in \mathcal{L}_{\mathcal{D}_s}\}$ consisting of the four closest neighbors:

$$[\mathbf{Y};\beta] = \text{const}_G \times \exp\{\beta \sum_{\mathbf{s}_k \in \mathcal{L}_{\mathcal{D}_s}} \sum_{\mathbf{s}_j \in \mathcal{N}(\mathbf{s}_k)} I(y(\mathbf{s}_k) = y(\mathbf{s}_j))\},\tag{1}$$

where $\mathbf{Y} = (Y(\mathbf{s_1}), ..., Y(\mathbf{s_n}))'$ and *n* is the number of grid nodes in $\mathcal{L}_{\mathcal{D}_s}$. The function I(A) is an indicator function taking the value 1 if A is true and 0 otherwise. The above prior defines the Gibbs formulation of an Ising model.

Specify the Markov formulation corresponding to the Gibbs formulation in (1), i.e derive an expression for the discrete distribution $[Y(s_i)|Y_{-i};\beta]$ for each $s_i \in \mathcal{L}_{\mathcal{D}_s}$ where $Y_{-i} = (Y(s_1), ..., Y(s_{i-1}), Y(s_{i+1}), ..., Y(s_n))'$.

Derive expressions for the posterior distributions $[\mathbf{Y}|\mathbf{Z};\beta]$ and $[Y(\mathbf{s}_i)|\mathbf{Y}_{-i},\mathbf{Z};\beta]$ for all $\mathbf{s}_i \in \mathcal{L}_{\mathcal{D}_s}$. Here, $\mathbf{Z} = (Z(\mathbf{s}_1), ..., Z(\mathbf{s}_n))'$, a vector containing the seismic observations for all $\mathbf{s}_i \in \mathcal{L}_{\mathcal{D}_s}$.

We are interested in realizations from $[\boldsymbol{Y}|\boldsymbol{Z};\beta]$ and estimates of $E\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$, Var $\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$ and MAP $\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$. To obtain this, we need to estimate $\hat{\beta}$. Use the observations from the geologically comparable domain \mathcal{D}_c to estimate β by a maximum pseudo-likelihood procedure. Denote the estimate $\hat{\beta}$.

Set the parameter $\beta = \hat{\beta}$ and use a Gibbs sampler MCMC-algorithm to simulate from the posterior $[\boldsymbol{Y}|\boldsymbol{Z}; \hat{\beta}]$. You can for example use a single-site updating MCMC-algorithm. Use torus boundary conditions to avoid border problems. Document that the algorithm has converged. Include visualizations of 10 independent realizations in your report.

Estimate $E\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$, $Var\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$ and $MAP\{\boldsymbol{Y}|\boldsymbol{Z};\beta\}$ based on several realizations from $[\boldsymbol{Y}|\boldsymbol{Z};\hat{\beta}]$, and visualize the results.

Comment on the results.

d) Compare the results in b) and c) and comment.