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Introduction

This assignment contains problems related to continuous spatial variables
and Gaussian random fields (RF). We recommend using R for solving the
problems, and relevant functions can be found in the R libraries geoR, akima
and fields.

Problem 1: Gaussian RF - model characteristics

Consider the continuous spatial variable {r(x) : x ∈ D : [1, 50] ⊂ R1}, and
assume that it is modeled as a stationary 1D Gaussian RF with the following
model parameters:

E{r(x)} = µr = 0

V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = ρr(τ)

where ρr(τ); τ = |x−x′|/10 is the spatial correlation function. Let D : [1, 50]
be discretised in L ∈ {1, 2, . . . , 50} and define the discretised Gaussian RF
{r(x);x ∈ L}.

Let the spatial correlation function ρr(τ), be either Powered exponential
with parameter νr ∈ [1, 1.9] or Matern with parameter νr ∈ [1, 3]. Let the
variance take the values σ2r ∈ [1, 5].

a) The spatial correlation functions must be a positive definite function,
specify this requirement mathematically. Explain why this requirement is
necessary ?
Display the two spatial correlation functions for τ ∈ R⊕ for the model param-
eters specified above. Discuss the features of the spatial correlation function
which is crucial for the associated Gaussian RF, and the relations between
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the variance and correlation function with the varigram function. Display
the associated variogram functions γr(τ).
Use the functions cov.spatial() and/or Matern().

b) Specify the pdf for the discretized prior Gaussian model.
Simulate ten realisations of the Gaussian RF on L for each of the eight
different sets of model parameters defined above and present them in eight
displays with ten realizations in each.
Discuss the relation between the realizations and the model parameters.

Let the spatial variable be observed as {d(x);x ∈ [10, 25, 30] ⊂ L} according
to the acquisition model,

d(x) = r(x) + ε(x) x ∈ [10, 25, 30]

with measurement errors ε(·) centred, independent and identically Gaussian
distributed with variance σ2ε . Further, assume that r(x) and ε(x′) are inde-
pendent for all x, x′.

c) Specify the expression for corresponding likelihood model and explain
why this is not a pdf, and the consequences thereof.

Consider the simulated realizations in b) with σ2r = 5 and select one realisa-
tion, and use the values at x ∈ [10, 25, 30] in this realization as the observed
values {d(x);x ∈ [10, 25, 30] ⊂ L}. Let the observation error variance take
the values σ2ε ∈ [0, 0.25].

d) Specify the pdf for the discretised posterior Gaussian RF given the ob-
servations.
Use the prior model for the realization selected above, and the likelihood
model with the two error variances listed above, and the actual observed
values. Compute the corresponding two prediction for the spatial variable
{r̂(x);x ∈ L} with associated prediction 0.9-intervals, and present the results
in two displays.
Discuss these two displays and relation between the model parameters and
the predictions with prediction intervals.

e) Simulate 100 realisations from each of the two discretised posterior Gaus-
sian RF models, and estimate empirically the prediction with associated
prediction 0.9-intervals based on these realizations for each model.
Present the simulated realizations in two displays, one for each model, and
over-print the corresponding empirically estimated predictions and predic-
tion intervals in each display.
Discuss the relation between the model parameters and the realizations,
and discuss the relation between the analytically and empirically obtained
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predictions with prediction intervals.

f) Consider the non-linear function on {r(x);x ∈ D},

Ar =

∫
D
I(r(x) > 2)dx

and use the 100 realizations with σ2ε = 0 to provide an prediction Âr
with associated prediction variance. An alternative predictor is based on the
predicted spatial variable with σ2ε = 0 being {r̂(x);x ∈ L},

Ãr =
∑
x∈L

I(r̂(x) > 2).

Compute the two predictions and the prediction variance of the former. Com-
pare the predictions and use Jensen’s inequality to explain why one expects
Âr > Ãr.

g) Present a short summary of the experiences you have made on evaluating
the model characteristics..

Problem 2: Gaussian RF - real data

Consider observations of terrain elevation, available in the file topo.dat. The
52 observations are located in the domain D = (0, 315)× (0, 315) ⊂ R2 . Let
the 52-vector of exact observations be d = (r(xo

1), . . . , r(x
o
52))

T .

a) Display the observations in various ways. Is a stationary Gaussian RF a
suitable model for the terrain elevation in domain D?
The functions interp(), contour() and image.plot() in the R libraries akima
and fields may be useful.

Let the terrain elevation in domain D be modeled by the Gaussian RF
{r(x);x ∈ D ⊂ R2} with

E{r(x)} = g(x)Tβr
V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = ρr(τ/ξ)

where g(x) = (g1(x), ..., gng(x))
T is ng-vector of known explanatory spatial

variables on x ∈ D, and βr = (β1, . . . , βng)
T is a ng-vector of unknown

parameters. Moreover, let the variance σ2r = 2500 and the spatial correlation
function have ξ = 100 with τ = |x− x′|.
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b) Develop the expression for the minimization problem to be solved for
the universal kriging predictor and the associated prediction variance at an
arbitrary location x0 ∈ D. The actual optimization need not be solved.

Let the reference variable x ∈ D ⊂ R2 be denoted x = (xv, xh), set ng = 6
and define the set of known polynomial functions g(x) to be all polynomials
xkvx

l
h for (k, l) ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}.

c) Specify the resulting ng-vector g(x)) and the expected value of r(x).
Present an interpretation of this model, and comment on the interaction
between the expectation model and the value of the variance.

Discretize the Gaussian RF to {r(x);x ∈ L} with the grid L : (315×315) ∈ D.
Calculate the universal Kriging predictor with associated prediction variance,
ie {r̂(x);x ∈ L} and {σ2r̂ (x);x ∈ L}. Display the results and comment on
them.
Use the function krige.conv().

Remove the second order terms in the expectation function, and calculate the
universal Kriging predictor with associated prediction variance. Is it natural
to change the value of the variance if the parametrization of expectation
function is changed?
Present the results and comment on them, and the relation to the results
using a higher-order expectation function.
Use trend.d and trend.l in krige.conv() to specify the form of the expectation
function - the function expand.grid() may also be useful.

d) Consider grid node x0 = (100, 100). Specify the probability for the
elevation to be higher than 700 m at this location. Further, specify the
elevation for which it is 0.90 probability that the true elevation is below it.

e) Assume in this next-to-last point that the observations in the ng-vector
d are associated with observation errors being centred Gaussian, indepen-
dent from eachother and the terrain elevation, with error variance σ2ε . Do
not change the numerical values of the observations. Calculate the Kriging
prediction with associated prediction variance for the two values on the ob-
servation errors σ2ε ∈ [5, 25], using both the expectation functions defined
above.
Present the results and comment and compare.

f) Present a short summary of the experiences you have made on evaluating
the real data.
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Problem 3: Parameter estimation

Consider the stationary Gaussian RF {r(x);x ∈ D ⊂ R2} with D : [(1, 30), (1, 30)],
with

E{r(x)} = µr = 0

V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = exp{−τ/ξr}

with τ = |x− x′|.

a) Consider the discretized Gaussian RF {r(x);x ∈ L} on grid L : [30×30] ∈
D. Set the model parameters σ2r = 2 and ξr = 15 and generate one realization
of the discretized Gaussian RF and display it.

b) Compute the empirical variogram based on exact observations of the
full realisation, and display the estimate jointly with the correct variogram
function. Comment on the result.
Use function variog().

c) Generate 36 locations uniformly randomly in the grid L. Compute the
empirical variogram estimate based on the corresponding 36 exact observa-
tions. Display the estimate jointly with the correct variogram function, and
comment on the results.

Consider the model parameters variance σ2r and ξr to be unknown. Estimate
the parameters by a maximum likelihood criterion based on exact observa-
tion of the full realization and based on the 36 exact observations. Display
the corresponding estimated variogram functions jointly with the correct
variogram function, and comment on the result.
Use the function likfit().
Discuss and compare all the results above.

d) Repeat the procedure in c) with 9, 64 and 100 uniformly randomly gen-
erated exact observations from the realization. Present the estimates jointly
with the correct variogram function in separate displays, and comment on
the results.

e) Present a short summary of the experiences you have made on parameter
estimation.

5


