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Introduction

This assignment contains problems related to continuous spatial variables
and Gaussian random fields (RF). We recommend using R for solving the
problems, and relevant functions can be found in the R libraries geoR, akima
and fields.

Problem 1: Gaussian RF - model characteristics

Consider the continuous spatial variable {r(x) : x ∈ D : [1, 50] ⊂ R1}, and
assume that it is modeled as a stationary 1D Gaussian RF with the following
model parameters:

E{r(x)} = µr = 0

V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = ρr(τ)

where ρr(τ); τ = |x−x′|/10 is the spatial correlation function. Let D : [1, 50]
be discretized in L ∈ {1, 2, . . . , 50} and define the discretized Gaussian RF
{r(x);x ∈ L}.

Let the spatial correlation function ρr(τ), be either Powered exponential
with parameter νr ∈ {1, 1.9} or Matern with parameter νr ∈ {1, 3}. Let the
variance take the values σ2r ∈ {1, 5}.

a) The spatial correlation function must be a positive definite function, spec-
ify this requirement mathematically. Explain why this requirement is neces-
sary ?
Display the two spatial correlation functions for τ ∈ R⊕ for the model param-
eters specified above. Discuss the features of the spatial correlation function
which are crucial for the associated Gaussian RF, and the relations between
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the variance and correlation function with the variogram function. Display
the associated variogram functions γr(τ).
Use the functions cov.spatial(.) and/or Matern(.).

b) Specify the pdf for the corresponding Gaussian model and let it be the
prior model.
Simulate four realizations of the Gaussian RF on L for each of the eight
different sets of model parameters defined above and present them in eight
displays with four realizations in each.
Discuss the relation between the realizations and the model parameters.

Let the spatial variable be observed as {d(x);x ∈ {10, 25, 30} ⊂ L} according
to the acquisition model,

d(x) = r(x) + ε(x) x ∈ {10, 25, 30}

with measurement errors ε(·) being centered, independent and identically
Gaussian distributed with variance σ2ε . Further, assume that r(x) and ε(x′)
are independent for all x, x′.

c) Specify the expression for the corresponding likelihood model and explain
why this is not a pdf, and the consequences thereof.

Consider the simulated realizations in b) with σ2r = 5 and select one realiza-
tion, and use the values at x ∈ {10, 25, 30} in this realization as the observed
values {d(x);x ∈ {10, 25, 30} ⊂ L}. Let the observation error variance take
the values σ2ε ∈ {0, 0.25}.

d) Specify the pdf for the discretized posterior Gaussian RF given the ob-
servations.
Use the prior model, the likelihood model with the two error variances listed
above, and the actual observed values. Compute the corresponding two
predictions for the spatial variable {r̂(x);x ∈ L} with associated prediction
0.9-intervals, and present the results in two displays.
Discuss these two displays and the relation between the model parameters
and the predictions with prediction intervals. Inspect carefully the appear-
ance of the predictions at the observation locations.

e) Simulate 100 realizations from each of the two discretized posterior Gaus-
sian RF models, and estimate empirically the prediction with associated
prediction 0.9-intervals based on these realizations for each model.
Present the simulated realizations in two displays, one for each model, and
over-print the corresponding empirically estimated predictions and predic-
tion intervals in each display.
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Discuss the relation between the model parameters and the realizations,
and discuss the relation between the analytically and empirically obtained
predictions with prediction intervals.

f) Consider the non-linear function on {r(x);x ∈ D},

Ar =
∑
x∈L

I(r(x) > 2)(r(x)− 2)

which approximates the area under the spatial variable and above level 2.
Use the 100 realizations from the posterior model with σ2ε = 0 to provide a
prediction Âr with associated prediction variance.
An alternative predictor for this area is based on the predicted spatial vari-
able with σ2ε = 0 being {r̂(x);x ∈ L},

Ãr =
∑
x∈L

I(r̂(x) > 2)(r̂(x)− 2).

Calculate this prediction.
Consider the two predictions and the prediction variance of the former. Com-
pare the predictions and use Jensen’s inequality to explain why one expects
Âr ≥ Ãr.

g) Present a short summary of the experiences you have made on evaluating
the model characteristics.

Problem 2: Gaussian RF - real data

Consider observations of terrain elevation, available in the file topo.dat. The
52 observations are located in the domain D = [(0, 315) × (0, 315)] ⊂ R2 .
Let the 52-vector of exact observations be d = (r(xo

1), . . . , r(x
o
52))

T .

a) Display the observations in various ways. Is a stationary Gaussian RF a
suitable model for the terrain elevation in domain D?
The functions interp(.), contour(.) and image.plot(.) in the R libraries akima
and fields may be useful.

Let the terrain elevation in domain D be modeled by the Gaussian RF
{r(x);x ∈ D ⊂ R2} with

E{r(x)} = g(x)Tβr
V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = ρr(τ/ξ)

where g(x) = (1, g2(x), ..., gng(x))
T is a ng-vector of known explanatory

spatial variables on x ∈ D, and βr = (β1, . . . , βng)
T is a ng-vector of un-

known parameters. Moreover, let the variance be σ2r = 2500 and the spatial
correlation function be ρr(τ) = exp{−(0.01τ)1.5} with τ = |x− x′|.
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b) Develop the expression for the minimization problem to be solved for
the universal kriging predictor and the associated prediction variance at an
arbitrary location x0 ∈ D. The actual optimization need not be solved.
Is it natural to change the value of the variance if the parameterization of
expectation function is changed?

c) Consider the case with E{r(x)} = β1, the so-called ordinary Kriging
model.
Discretize the Gaussian RF to {r(x);x ∈ L} with the grid L : [(1, 315) ×
(1, 315)] ∈ D. Calculate the universal Kriging predictor with associated pre-
diction variance, {r̂(x);x ∈ L} and {σ2r̂ (x);x ∈ L}. Display the results and
comment on them.
Use the function krige.conv(.) and the arguments trend.d and trend.l in
krige.control(.) to specify the form of the expectation function - the function
expand.grid(.) may also be useful.

d) Let the reference variable x ∈ D ⊂ R2 be denoted x = (xv, xh), set ng = 6
and define the set of known polynomial functions g(x) to be all polynomials
xkvx

l
h for (k, l) ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}.

Specify the resulting ng-vector g(x) and the expected value of r(x).
Discretize the Gaussian RF to {r(x);x ∈ L} with the grid L : [(1, 315) ×
(1, 315)] ∈ D. Calculate the universal Kriging predictor with associated pre-
diction variance, {r̂(x);x ∈ L} and {σ2r̂ (x);x ∈ L}. Display the results and
comment on them.
Use the function krige.conv(.) and the arguments trend.d and trend.l in
krige.control(.) to specify the form of the expectation function - the function
expand.grid(.) may also be useful.

e) Use the ordinary Kriging predictor with associated prediction variance
and consider grid node x0 = (100, 100). Calculate the probability for the
elevation to be higher than 850 m at this location. Further, calculate the
elevation for which it is 0.90 probability that the true elevation is below it.

f) Present a short summary of the experiences you have made on evaluating
the real data.
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Problem 3: Parameter estimation

Consider the stationary Gaussian RF {r(x);x ∈ D ⊂ R2} with D : [(1, 30)×
(1, 30)], with

E{r(x)} = µr = 0

V ar{r(x)} = σ2r

Corr{r(x), r(x′)} = exp{−τ/ξr}

with τ = |x− x′|.

a) Consider the discretized Gaussian RF {r(x);x ∈ L} on grid L : [(1, 30)×
(1, 30)] ∈ D. Set the model parameters σ2r = 2 and ξr = 3 and generate one
realization of the discretized Gaussian RF and display it.

b) Compute the empirical variogram based on exact observations of the
full realization, and display the estimate jointly with the correct variogram
function. Comment on the result, particularly the precision of the estimates
due to finite domain D.
Use the function variog(.) in GeoR .

c) Repeat point a) and b) three times. Comment on the results.

d) Generate 36 locations uniformly randomly in the grid L. Compute the
empirical variogram estimate based on the corresponding 36 exact observa-
tions. Display the estimate jointly with the correct variogram function, and
comment on the results.

Consider the model parameters variance σ2r and ξr to be unknown. Estimate
the parameters by a maximum likelihood criterion based on exact observa-
tion of the full realization and based on the 36 exact observations. Display
the corresponding estimated variogram functions jointly with the correct
variogram function, and comment on the result.
Use the function likfit(.) in GeoR .
Discuss and compare all the results above.

e) Repeat the procedure in d) with 9, 64 and 100 uniformly randomly gen-
erated exact observations from the realization. Present the estimates jointly
with the correct variogram function in separate displays, and comment on
the results.

f) Present a short summary of the experiences you have made on parameter
estimation.
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