

Contact: Jo Eidsvik Tlf. 90127472

EXAM IN TMA4250 SPATIAL STATISTICS Monday 23. May 2011 Tid: 09:00-13:00

Material:

Statistiscal tables and formulas, Tapir. Written yellow sheet of paper. Calculator.

Grade: 13. June 2011

Problem 1

We study a regression model with spatially correlated Gaussian noise terms. The response y(s) at coordinate s is modeled by

$$y(s) = x^{t}(s)\beta + \epsilon(s), \qquad s = (s(1), s(2)) \in (0, 1) \times (0, 1).$$
 (1)

Here $\boldsymbol{x}(\boldsymbol{s})$ is a $p \times 1$ vector of explanatory variables at coordinate \boldsymbol{s} , while $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)^t$ are regression parameters. The 0 mean Gaussian noise terms have covariance $\text{Cov}(\boldsymbol{\epsilon}(\boldsymbol{s}), \boldsymbol{\epsilon}(\boldsymbol{s}')) = \Sigma(\boldsymbol{s}, \boldsymbol{s}'; \boldsymbol{\theta})$, where $\boldsymbol{\theta}$ are model parameters in the chosen spatial covariance function.

a) Assume the noise process $\epsilon(s)$ is stationary and isotropic. What does this mean in practice and which model assumptions does it impose on the mathematical representation of $\Sigma(s, s'; \theta)$?

A common covariance function is the exponential $\Sigma(\mathbf{s}, \mathbf{s}'; \boldsymbol{\theta}) = \theta_1 \exp(-\theta_2 h)$, where $h = ||\mathbf{s} - \mathbf{s}'||$ is the distance from \mathbf{s} to \mathbf{s}' . Another possibility is the Cauchy type $\Sigma(\mathbf{s}, \mathbf{s}'; \boldsymbol{\theta}) = \theta_1/(1 + \theta_2 h)^3$. Calculate the effective spatial correlation range in these two models, i.e. the distance h such that the correlation is 0.05.

b) We want to estimation parameters from data $y(s_i)$ and explanatory variables $x(s_i)$, i = 1, ..., n. We assume an exponential covariance function for the noise process, treating θ_2 as known. Define the likelihood function for (β, θ_1) .

Calculate the maximum likelihood estimator for $(\boldsymbol{\beta}, \theta_1)$.

Page 1 of 3

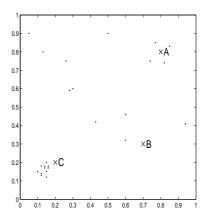


Figure 1: Data sites and three prediction sites (A, B, C).

c) We assume $\beta = 0$. Figure 1 shows n = 25 measurement sites and three locations (A, B, C) where we want to predict.

Using parameter $\boldsymbol{\theta} = (1^2, 7.5)$ the three prediction variances are 0.67^2 , 0.88^2 and 0.60^2 . Which of the three (A, B eller C) has the smallest prediction variance (0.60^2) ? Which has the largest (0.88^2) ? Discuss the results.

We next study another model for the noise process:

$$\epsilon(\mathbf{s}) = I[\xi(\mathbf{s}) = 0]\epsilon_0(\mathbf{s}) + I[\xi(\mathbf{s}) = 1]\epsilon_1(\mathbf{s}), \qquad \mathbf{s} \in (0, 1) \times (0, 1),$$
(2)

where $\xi(\mathbf{s})$ is a random variable with outcomes 0 or 1 at each coordinate \mathbf{s} . Further, $\epsilon_0(\mathbf{s})$ and $\epsilon_1(\mathbf{s})$ are *independent* processes with 0 mean, variance 1 and covariance $\Sigma_0(\mathbf{s}, \mathbf{s}'; \boldsymbol{\theta}) = \exp(-\theta_{0,2}h)$ for $\epsilon_0(\mathbf{s})$ and $\Sigma_1(\mathbf{s}, \mathbf{s}'; \boldsymbol{\theta}) = \exp(-\theta_{1,2}h)$ for $\epsilon_1(\mathbf{s})$.

d) Compute $\text{Cov}(\epsilon(s), \epsilon(s')|\xi(s), \xi(s'))$ for all combinations of $\xi(s)$ and $\xi(s')$.

Assume that s(1) = 0.5, and set $\xi(0.5, s(2)) = 0$ for s(2) < 0.25, $\xi(0.5, s(2)) = 1$ for $0.25 \le s(2) < 0.35$, $\xi(0.5, s(2)) = 0$ for $0.35 \le s(2) < 0.75$, and $\xi(0.5, s(2)) = 1$ for $s(2) \ge 0.75$. Sketch 5 possible realizations of the $\epsilon(0.5, s(2))$ process with parameters $\theta_{0,2} = 3$ and $\theta_{1,2} = 30$.

Assume that the $\xi(s)$ are defined from a Gaussian process z(s), $s \in (0,1) \times (0,1)$ such that:

$$\xi(\mathbf{s}) = 0 \text{ if } z(\mathbf{s}) < 0, \quad \xi(\mathbf{s}) = 1 \text{ if } z(\mathbf{s}) \ge 0.$$
 (3)

Here we set $E(z(\mathbf{s})) = 0$, $Var(z(\mathbf{s})) = 1$ and with covariance $\Sigma_z(\mathbf{s}, \mathbf{s}'; \boldsymbol{\theta}_z) = \exp(-\theta_{z,2}h)$, $h = ||\mathbf{s} - \mathbf{s}'||.$ e) Use the bivariate normal distribution to show that $P(\xi(\boldsymbol{s}) = 0 \cap \xi(\boldsymbol{s}') = 0) = \frac{\arctan(-\sqrt{1-\rho^2}/\rho)}{2\pi}$, where $\rho = \exp(-\theta_{z,2}h), h = ||\boldsymbol{s} - \boldsymbol{s}'||$.

Take for granted that $\int_{-\infty}^{0} \phi(x) \Phi(bx) dx = \frac{\arctan(1/b)}{2\pi}$, where $\phi(x)$ is the density function of the standard normal and $\Phi(x)$ is the cumulative function of the standard normal.

f) Use the result from 1e) to compute $Cov(\epsilon(\boldsymbol{s}), \epsilon(\boldsymbol{s}'))$.

Problem 2

a) We consider a homogeneous Poisson process with intensity λ on the unit square $(0,1) \times (0,1)$. What is the probability of 0 points in $(0,0.1) \times (0,0.1)$?

We split the domain $(0,1) \times (0,1)$ in 100 disjoint cells of equal area 0.1^2 . What is the probability that at least one of the cells contains 0 points? Find an approximate value for λ such that there is 0.05 probability for this event.

b) We next consider an inhomogeneous Poisson process with intensity $\lambda(x, y) = \lambda_0 xy$, 0 < x < 1, 0 < y < 1. Use the same split in 100 disjoint cells of equal size. What is the probability of 0 points in $((i - 1)/10, i/10) \times ((j - 1)/10, j/10)$, $i, j = 1, \ldots, 10$?

Describe a Monte Carlo algorithm for estimating the probability that at least one cell contains 0 points.

Problem 3

Data \boldsymbol{x} has been acquired on a regular two dimensional grid of size $m \times n$. We model $\boldsymbol{x} = (x_1, \ldots, x_{mn})'$ as a binary Markov random field, with cell outcomes $x_i \in \{0, 1\}, i = 1, \ldots, mn$. We use a second order neighborhood.

a) Draw a second order neighborhood on a regular grid. What is a clique? Define the cliques of this second order neighborhood.

Draw all clique configurations (16 in total). Use symmetry relations to split the configurations into 4 classes: 1 'one-colored', 2 'corner', 3 'row/column', 4 'diagonal'.

Each of these four classes of configurations are assigned a potential $\phi(\boldsymbol{x}_k)$, where \boldsymbol{x}_k are the combinations of variables in the clique. $\phi(\boldsymbol{x}_k)$ takes one of the following values; ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 .

b) Define the pseudolikelihood as the product of the full conditionals of all single cells. Express some of the terms in the pseudolikelihood using the model from above. Describe a method for computing the maximum pseudolikelihood estimator of $(\phi_1, \phi_2, \phi_3, \phi_4)$.

Page 3 of 3