

Department of Mathematical Sciences

Examination paper for TMA4250 Spatial Statistics

Academic contact during examination: Professor Henning Omre Phone: 90937848

Examination date: May 16. 2014

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Tabeller og Formler i Statistikk, Tapir NTNU certified calculator Personal, hand written, yellow peep sheet - A5-format

Language: English Number of pages: 3 Number pages enclosed: 0

Checked by:

Problem 1 CONTINUOUS RANDOM FIELDS.

Consider a continuous random field $\{R(x); x \in \mathcal{D} \subset \mathbb{R}^2\}$, with model parameters: $E\{R(x)\} = \mu ; x \in \mathbb{R}^2$ and $\operatorname{Var}\{R(x)\} = \sigma^2 ; x \in \mathbb{R}^2$. The spatial isotropic correlation function is $\operatorname{Corr}\{R(x'), R(x'')\} = \rho(\tau) ; x', x'' \in \mathbb{R}^2$ with $\tau = |x' - x''|$. Let $\mathcal{D} : [0, 10] \times [0, 10] \subset \mathbb{R}^2$.

Let expectation μ be unknown, while variance σ^2 and spatial correlation function $\rho(\tau)$ are known.

Define also the spatial average over \mathcal{D} :

$$R_{\mathcal{D}} = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} R(u) du$$

with $|\mathcal{D}|$ being the area of \mathcal{D} .

a) Develop expressions for $E\{R_{\mathcal{D}}\}$ and $\operatorname{Var}\{R_{\mathcal{D}}\}$.

Consider an arbitrary location $x_o \in \mathcal{D}$, and develop an expression for the covariance $\text{Cov}\{R(x_o), R_{\mathcal{D}}\}$.

Let the random field be observed at locations $x_1, \ldots, x_n \in \mathcal{D}$, hence the observations $[R(x_1), \ldots, R(x_n)]$ are collected.

b) Define the linear estimator for expectation μ :

$$\hat{\mu} = \sum_{i=1}^{n} \beta_i R(x_i)$$

with $\beta = (\beta_1, \ldots, \beta_n)$ being unknown weights to be determined.

Develop an expression for the best linear unbiased estimator under quadratic loss for μ , with associated estimation variance. Only the minimization problem to be solved need to be specified.

c) Define the linear predictor for the spatial average $R_{\mathcal{D}}$:

$$\hat{R}_{\mathcal{D}} = \sum_{i=1}^{n} \alpha_i R(x_i)$$

with $\alpha = (\alpha_1, \ldots, \alpha_n)$ being unknown weights to be determined.

Develop an expression for the best linear unbiased predictor under quadratic loss for $R_{\mathcal{D}}$, with associated prediction variance. Only the minimization problem to be solved need to be specified.

Compare the expressions developed in the current point and point b).

Problem 2 EVENT RANDOM FIELDS

Consider a homogeneous, marked point random field $\{(X_i, L_i); i = 1, \ldots, N; \mathcal{D} \subset \mathbb{R}^2\}$ defined over the area $\mathcal{D} : [0, 10] \times [0, 10] [m^2] \in \mathbb{R}^2$, representing horizontal (parallel to first axis) line-segments of length L centred at location X, see Figure 1.

Let $\{X_i; i = 1, \ldots, N; \mathcal{D} \subset \mathbb{R}^2\}$ be a homogenous Poisson RF with intensity parameter be $\lambda \geq 0$ $[m^{-2}]$, while the line-segment length *L* has probability density function (pdf) f(l). Moreover, let the random variables *X* and *L* be independent.

Note that the line-segments may intersect the vertical (parallel to second axis) boundaries of the domain \mathcal{D} .

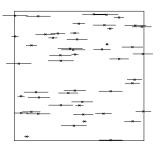


Figure 1: Example of marked point random field.

Assume firstly that the line-segment lengths L are constant equal to 2 [m], ie f(l) is a Dirac pdf at l = 2.

a) Specify an expression for the pdf for the number of line-segments in the domain ${\cal D}$.

Specify an expression for the pdf for the number of line-segments that intersects the boundary of \mathcal{D} .

Specify the expected number of intersections.

b) Consider one specific line-segment located centrally in the domain \mathcal{D} , such that boundary effects can be ignored.

Develop an expression for the pdf of the shortest distance between this specific line-segment and any other line-segment.

Assume now that the line-segment lengths are random with pdf:

$$f(l) = \begin{cases} \frac{1}{2}l & \text{for } 0 < l < 2\\ 0 & \text{otherwise} \end{cases}$$

c) Develop an expression for the pdf for the number of line-segments that intersects the boundary of the domain \mathcal{D} .

Consider one arbitrary line-segment which intersects the boundary of \mathcal{D} .

Develop an expression for the pdf of the line-segment length of this linesegment that intersects the boundary. Comment on the results.

Problem 3 MOSAIC RANDOM FIELDS

Consider a mosaic random field $L : \{L_x : x \in \mathcal{L}_{\mathcal{D}}\}$ where $\mathcal{L}_{\mathcal{D}}$ is a regular grid with n nodes over $\mathcal{D} \subset \mathbb{R}^2$, and $L_x \in \Omega_l : \{W, B\}$. Hence the variables L_x can belong to one of the classes white (W) or black (B) for each $x \in \mathcal{L}_{\mathcal{D}}$.

Define the following Gibbs formulation for the field:

$$\operatorname{Prob}\{L = l; \beta = (\beta_W, \beta_B)\} = \operatorname{const}_{\beta} \times \exp\{ \beta_W \times \Sigma_u I(l_u = W) + \beta_B \times \Sigma_u I(l_u = B) + \frac{1}{2} \times \Sigma_{< u, v > I}(l_u = l_v) \}$$

where $u, v \in \mathcal{L}_{\mathcal{D}}$ and $\langle u, v \rangle$ represents all pairs of closest neighbours in the grid $\mathcal{L}_{\mathcal{D}}$ and I(A) is an indicator function taking the value 1 whenever A is true and 0 otherwise. The $\beta = (\beta_W, \beta_B)$ are unknown model parameters.

- a) Present an interpretation of the model parameters $\beta = (\beta_W, \beta_B)$. Demonstrate that the Gibbs formulation is over-parametrized and actually is only dependent on $\Delta\beta = (\beta_W - \beta_B)$. Be precise with the notation.
- **b)** Develop the corresponding Markov formulation as a function of $\Delta\beta = (\beta_W \beta_B)$. Be precise with the notation.

Discuss the most important differences between the Gibbs and the Markov formulations.