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1 Part I: Continous Random Fields

The R/Spatial Library is required for solving the problems. The command library(spatial)
loads the library.

Problem 1: 1D Gaussian RF

Consider a Gaussian RF {R(x);x ∈ D ⊂ R1};D ∈ [0, 50] with

E{R(x)} = 0

Cov{R(x′), R(x′′)} = σ2 × exp{−|x
′ − x′′|ν

β
}

(1)

where σ2, β and ν are model parameters.

(a) Plot the spatial covariance function for di�erent values of the parameters, start with
(σ2, β, ν) = (1, 3, 1). Describe the in�uence of each of the parameters on the Gaussian RF.

The spatial variogram function is de�ned as

γ(x′ − x′′) =
1

2
V ar{R(x′)−R(x′′)} (2)
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Develop the expression for the variogram function for the RF speci�ed above, and plot it
for one choice of parameter values. Explain which features are denoted sill and range.

Hint: Use the functions expcov and gaucov.

(b) Discretize D into LD : [0, 1, . . . , 50] and de�ne the discretized Gaussian RF {R(x);x ∈
LD}. Use the de�nition of Gaussian RF to simulate this discretized RF for di�erent values
of the model parameters. Comment on the results.

Hint: Use the function mvrnorm in the MASS library.

(c) Use the model parameters (σ2, β, ν) = (4, 3, 1) and simulate one realization of {R(x);x ∈
LD}. Plot the realization and compute the area under the realization and above level 2.0.

Let the realizations in locations x = (10, 15, 40) be considered as observations o.

Consider the discretized conditional Gaussian RF {[R(x)|o];x ∈ LD} and generate 100
realizations of it. Plot 10 of these realizations, and comment.

In each location x ∈ [0, 1, . . . , 50] compute the average and empirical variance over the 100
realizations. Plot the results, and comment.

Compute the discretized expected function {E{R(x)|o};x ∈ LD} and variance function
{V ar{R(x)|o};x ∈ LD}, plot the results, and comment.

Compare the results obtained above.

Problem 2: Kriging Prediction

Consider the terrain elevation in an area D : [(0, 0)× (7, 7)], denoted {r(x);x ∈ D ⊂ R2}.
The terrain elevation is observed in 52 locations, rd = (r(x1), r(x2), . . . , r(x52)), which are
available in the MASS library. Type data(topo) to obtain the data

(a) Let the terrain elevations be modelled as an isotropic continuous RF {R(x);x ∈ D}
with

R(x) =
∑
r+s≤p

ars(x
1)r(x2)s + U(x)

Cov{U(x′), U(x′′)} = exp{−0.7|x′ − x′′|}
(3)
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where x = (x1, x2) and ars are unknown coe�cients.

Based on the model assumptions and the available observations, rd , compute the Univer-
sal Kriging (UK) prediction for a suitable discrtization over D. Use p = 0, 2, 4, 6 in the
calculations. Compute also the associated UK prediction standard deviation.

Plot the results as contour plots, gray-scale plots and perspective plots with the observa-
tions marked. Comment on the results.

Hint: Use the function surf.gls and semat for UK and the functions contour, image
and persp for plotting.

(b) Alternatively one may use an ordinary regression approach, termed trend surface, with

R(x) =
∑
r+s≤p

ars(x
1)r(x2)s + U(x)

Cov{U(x′), U(x′′)} = I(x′ = x′′)

(4)

where x = (x1, x2), I(A) is equal to 1 whenever A is true an d zero else, and ars are unknown
coe�cients. Note that the residuals do not have any spatial dependence.

Based on these model assumptions and the available observations, rd, compute the trend
surface for a suitable discretization over D. Use p = 0, 2, 4, 6 in the calculations.

Plot the results as in point a) and comment.

Hint: Use the function surf.ls for trend surface analysis.

(c)Discuss the following:

• similarities and di�erences for UK and trend surface

• strengths and weaknesses for each approach

• strengths and weaknesses of various display alternatives

3



Part II: Event RF

Problem 3: Gibbs RF/Strauss model

Consider an Event RF {Xi; i = 1, . . . , n;D} given number of points equal n. Let it be
represented by a Gibbs pdf:

f(x|n) = const× exp{−
n∑
i

n∑
j

φ(τij)} (5)

where x = (x1, . . . , xn), τij = |xi − xj| and φ(τ) is the interaction function,

φ(τ) =

{
α τ < r

0 else
(6)

This model is termed the Strauss model.

(a) Use the MCMC-MH algorithm to generate a realization of this Strauss model on a
unit square with n = 50, r = 0.1 and α = 10. Repeat the simulations for α = 1 and α = 0.
Justify the convergence of the algorithm.

Plot the results and comment.

(b) Estimate the L-function for each of the realizations in point a).

Simulate 100 realizations of a Binominal RF on the unit square with n = 50. Estimate
the expected and 0.8 envelope of the L-function for this Binominal RF based on these
realizations.

Plot the L-functions estimated above and comment on the results.

(c) Assume that the number of points is random according to a Poisson distribution with
parameter λ. Specify the expression for f(x, n).

Specify a simulation algorithm for the corresponding Event RF - the algorithm need not
be implemented.
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Part III: Markov Fields

Problem 5: Markov RF

Consider a binary Markov RF L : {Lx;x ∈ LD} where LD is a lattice over D ⊂ R2 and
Lx ∈ [−1, 1]. The pdf is:

Prob{L = l} = const× exp{
∑
x∼y

[β−I(lx = ly = −1) + β+I(lx = ly = 1)]} (7)

where x ∼ y indicates sum over closest neighbours, I(A) is one whenever A is true and zero
otherwise, and (β−, β+) are model parameters. Note that by setting β− = β+ one obtains
the Ising model.

(a) Specify the neighborhood and clique systems of the model.

Simulate three realizations on lattice [32 × 32] by the MCMC-MH algorithm with model
parameters β− = β+ = 0.23. Repeat the simulations for three other choices of model
parameters. Justify the convergence of the algorithm.

Plot the results and comment.

Hint: Use Matlab in the implementation of the simulation algorithm.

(b) Specify the pseudolikelihood function for the parameters in the model.

Use maximum pseudolikelihood to estimate (β−, β+) from each of the realizations generated
in point a). Comment on the results.

Problem 6: Bayesian image analysis

The noisy image o : {ox;x ∈ LD} with LD : [115× 52] and ox ∈ R1 can be copied from the
�le noiseimage.mat. Assume that the likelihood model is:

O : {Ox = lx + Ux;x ∈ LD} (8)

where lx ∈ {−1, 1} and U : {Ux;x ∈ LD} are iid Gauss1(ux; 0, 1.52).
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Assume further that a representative prior model for l : {lx;x ∈ LD} is a Markov RF as

Prob{L = l} = const× exp{−1

2

∑
x∼y

I(lx = ly)} (9)

where x ∼ y indicates summation over closest neighbours and I(A) equals one whenever
A is true and zero else.

(a) Specify the posterior model for [L|o].

Demonstrate that the posterior model is also a Markov RF with the same neighborhood
system as the prior model.

(b) Use the MCMC-Gibbs algorithm to generate realizations from the posterior model.
Use torus border conditions in the algorithm. Justify that the algorithm has converged.

Plot some of the realizations and comment.

(c) De�ne the Locationwise maximum posterior (LMAP) predictor of the image.

Estimate LMAP for the image above, plot it and comment.
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