TMA4255 Applied Statistics Exercise 2

Problem 1

The lengths of time, in minutes, that 10 patients waited in a doctor's office before receiving treatment were recorded as follows: 5, 11, 9, 5, 10, 15, 6, 10, 5, and 10. Treating the data as a random sample, find

- (a) the mean;
- (b) the median;
- (c) the mode;
- (d) the standard deviation.

Problem 2

If a certain machine makes electrical resistors having a mean resistance of 40 ohms and a standard deviation of 2 ohms, what is the probability that a random sample of 36 of these resistors will have a combined resistance of more than 1458 ohms?

Problem 3

If all possible samples of size 16 are drawn from a normal population with mean equal to 50 and standard deviation equal to 5, what is the probability that a sample mean \bar{X} will fall in the interval from $\mu_{\bar{X}} - 1.9\sigma_{\bar{X}}$ to $\mu_{\bar{X}} - 0.4\sigma_{\bar{X}}$? Assume that the sample means can be measured to any degree of accuracy.

Problem 4

Given a normal random variable X with mean 20 and variance 9, and a random sample of size n taken from the distribution, what sample size n is necessary in order that

$$P(19.9 \le \bar{X} \le 20.1) = 0.95$$
 ?

Problem 5

If S_1^2 and S_2^2 represent the variances of independent random samples of size $n_1 = 25$ and $n_2 = 31$, taken from normal populations with variances $\sigma_1^2 = 10$ and $\sigma_2^2 = 15$, respectively, find $P(S_1^2/S_2^2 > 1.26)$.