Exercise 5-Solutions TMA4255 Applied Statistics

February 14, 2017

1 Problem 1

- $H_0: \ \mu = 5.5$
- $H_1: \ \mu < 5.5$ $\alpha = 0.05$

Critical region: $z < -z_{\alpha}$, where $z_{\alpha} = 1.645$ and $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

Computations: $\bar{x} = 5.23$, $\sigma = 0.24$, and hence $z = \frac{5.23 - 5.5}{0.24/\sqrt{64}} = -9$

Decision: reject H_0 .

The P-value corresponding to z = -9 is P = P(Z < 9) that is lower than α . This is another evidence to reject H_0 .

2 Problem 2

- $H_0: \ \mu = 5.5$
- $H_1: \mu < 5.5$

With significance level $\alpha = 0.05$ and variance known.

Power test = $0.90 = 1 - \beta$, hence $\beta = 0.10$.

We know from the theory that

$$n \approx \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{\delta} = \frac{(1.282 + 1.645)^2 0.24^2}{0.3^2} = 5.45,$$

where $\delta = \mu - \mu_0$. So we choose n = 6.

3 Problem 3

In this case we want to test the hypothesis

- $H_0: p = 0.6$
- $H_1: p \neq 0.6$

 $\alpha = 0.05$

Test statistics: Binomial variable X with p = 0.6 and n = 200

Computations: since the sample size n is large we prefer to approximate X with a Gaussian $N(np_0, np_0q_0) = N(120, 48)$. x = 110, so the P-value is given by

$$2P(X < 120) = 2P(\frac{X - 120}{\sqrt{48}} < \frac{110 - 120}{\sqrt{48}}) = 0.095.$$

The P-value is higher than α , so H_0 is not rejected.

4 Problem 4

	Non-smokers	Moderate smokers	Heavy smokers	Total
Hypertension	21	36	30	87
No Hypertension	48	26	19	93
Total	69	62	49	180

Let's start computing the expected frequency:

expected frequency =
$$\frac{(\text{column total}) \times (\text{row total})}{\text{grand total}}$$

the computed expected frequencies are recorded in parenthesis inside the table.

	Non-smokers	Moderate smokers	Heavy smokers	Total
Hypertension	21(33.35)	36(29.9)	30(23.68)	87
No Hypertension	48 (35.65)	26(32.03)	19(25.31)	93
Total	69	62	49	180

and the degree of freedom is given by

$$\nu = (r-1)(c-1) = 2.$$

Then to test the independence we compute:

$$\chi^2 = \sum_i \frac{(o_i - e_i)^2}{e_i} = 14.4$$

Since $\chi^2_{0.05} = 5.991$, we have that $\chi^2 > \chi^2_{\alpha}$, hence we reject the null hypothesis of independence.