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Tentative solutions to TMA4255 Applied Statistics, June 6, 2011

Problem 1 Body mass index

a) The goal of the one-way ANOVA is to find out whether data from several groups have a
common mean.
One-way ANOVA model:
Let Yij be the BMI or ln(BMI) for the jth individual within the ith genotype group. The
one-way ANOVA model can be written as:

Yij = µ+ αi + εij

where µ is the overall mean and αi is the deviation from the mean of group i to the
overall mean. We also assume that the error terms, εij are independent and normally
distributed with mean 0 and variance σ2. This also implies that the variances are the
same for the different groups.
Choose to model BMI or ln(BMI)?
I would choose to model ln(BMI) since this is more in accordance with the one-way
ANOVA model than choosing BMI. The reason lies mainly in the normality of the
studentized residuals. We can see this from the symmetry of the distribution for ln(BMI)
for each genotype. The BMI boxplots are slightly skewed to the right, since the mean is
larger than the median for all genotypes. We also only see observations larger than the
upper whisker and not smaller than the lower whisker. The ln(BMI) boxplots show more
symmetric distributions, where means are nearly equal to medians and observations are
observed both larger than the upper whisker and smaller than the lower whisker. The
studentized residuals from the BMI model does not look normally distributed. The
studentized residuals from the ln(BMI) model look normally distributed.
There is no obvious part of the ANOVA printout that can guide us in our choice.
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b) The null hypothesis tested in a one-way ANOVA is

H0 : α1 = α2 = · · · = αk vs. H1 : at least one αi different

Here i = 1, ..., k are the groups, and in our ln(BMI) data we have k = 3 groups.
The letter F and the DF columns:

F =
SSA
k−1
SSE
N−k

where SSA is the sum-of-squares for FTO, and SSE is Error in the printout. Here F is
the test statistic, and under H0 it has a Fisher distribution with two parameters. These
two parameters are the degrees of freedom for the FTO-grouping k − 1 = 3− 1 = 2 and
the Error degrees of freedom n − k = 4435 − 3 = 4432. For our ln(BMI) data the null
hypothesis is rejected since the p-value for the test is in the order of 10−5. We conclude
that the mean ln(BMI) is not the same for all the FTO-genotype groups.
The one-way ANOVA model assumes that the εij are independent and normally dis-
tributed with mean 0 and variance σ2. This means that Var(Yij) = σ2 and the same
variance is assumed for all groups. This can be tested with Bartlett’s test or Levene’s
test of equal variances. The null hypotheis tested is:

H0 : σ2
1 = σ2

2 = · · · = σ2
k vs. σ2

i 6= σ2
l for at least one pair (i, l)

From the residual plots we have seen that we are close to normality, and we can focus
on using Bartlett’s test. With a p-value of 0.25 it means that the null hypothesis will
not be rejected and we find that there is not reason to believe that the variances for the
different FTO genotype groups differ.

c) Individual standard deviations for the groups, si, and S from ANOVA:
In the one-way ANOVA we assume a common variance for the ln(BMI) in all groups.
This means that we may pool together the individual empirical variances to estimate
a common variance for all groups. The weighing factor is the number of observations
minus one (for the group mean) in each group. Here S2

i is the estimator for σ2 based on
the ith group (as given in the exam text).

S2 =
∑k

i=1(ni − 1)S2
i∑k

i=1(ni − 1)
=

∑k
i=1(ni − 1)S2

i

n− k
= SSE
n− k

Numerically:

S =
√

(1678− 1) · 0.15792 + (2068− 1) · 0.15772 + (689− 1) · 0.16562/
√

4435− 3 = 0.159
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95% confidence interval for the difference in ln(BMI) between the 0 and 1 FTO genotype
group:
We assume that Yij is observation j from group i and that Yij ∼ N(µi, σ

2), where all
observations are independent. We look at group i = 0 and i = 1 and use estimators
Yi. = 1

ni

∑ni
j=1 Yij for µi and S from the ANOVA output for σ. Then

(Y0. − Y1.)− (µ0 − µ1)√
( 1

n0
+ 1

n1
)S

follows a t-distribution with the same number of degrees of freedom as S2. S2 has
n − k = 4432 degrees of freedom. The t0.025,4432 critical value is close to the standard
normal z0.025 = 1.96 for 4432 degrees of freedom. The 95% CI then becomes:

[(y0. − y1.)± t0.025,4432

√
( 1
n0

+ 1
n1

)S] =

[(3.1809− 3.1920)± 1.96 ·
√

(1/1678 + 1/2068) · 0.159] = [−0.021,−0.0009]

We may conclude that it seems that these two grops have different means (since the CI
does not contain 0).
When using «one-way multiple comparisons» with Tukey’s method we aim at holding the
coverage probability for all three CIs (group 0 vs 1, group 0 vs 2 and group 1 vs 2) at level
95%. The critical value used for the individual confidence intervals is found theorethically
using the “Studentized Range distribution” , and the Tukey method assumes the worst
by focusing on the distribution of the largest difference for our three comparisons. We
now see that the CI for the difference between group 0 and 1 covers 0 and may conclude
that we do not have strong enought evidence to conclude that these two groups have
different means. The printout from MINITAB further shows that the means from group
0 and 2 may be considered different, and also the means from group 1 and 2.

d) We use the first order Taylor approximation to find the estimated mean and standard
deviation for the BMI = exp(ln(BMI)) from the estimated mean and standard deviation
for the ln(BMI).
Let X = ln(BMI) with E(X) = µ and Y = BMI = exp(X), so that g(X) = exp(X).
The first order Taylor approximation:

g(X) ≈ g(µ) + g′(µ)(X − µ)

With

E(g(X)) ≈ g(µ)
Var(g(X)) ≈ [g′(µ)]2Var(X)
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Here g′(X) = exp(X).
With estimates: we have µ̂ = 3.2151 and σ̂ = 0.1656.

Ê(BMI) ≈ exp(µ̂) = exp(3.2151) = 24.9
̂SD(BMI) ≈ exp(µ̂) · σ̂ = exp(3.2151) · 0.1656 = 4.1243

Problem 2 We use the χ2 goodness of fit test, based on calculated expected frequencies
using the distribution under the null hypothesis.

We need to calculate the expected frequency for each grade, which again is based on calculating
the probability for each grade under the null hypothesis. Define:

• pi expected probability for class i.

• oi observed count in class i.

• ei expected count in class i.

Let X ∼ N(46.3, 13.2).

P (X ≤ 68.5) = P (Z ≤ 68.5− 46.3
13.2 ) = Φ(1.68) = 0.9535

P (X ≤ 58.5) = P (Z ≤ 58.5− 46.3
13.2 ) = Φ(0.92) = 0.8212

P (X ≤ 44.5) = P (Z ≤ 44.5− 46.3
13.2 ) = Φ(−0.14) = 0.4443

P (X ≤ 36.5) = P (Z ≤ 36.5− 46.3
13.2 ) = Φ(−0.74) = 0.2296

P (X ≤ 31.5) = P (Z ≤ 31.5− 46.3
13.2 ) = Φ(−1.12) = 0.1314

pA = P (X > 68.5) = 1− P (X ≤ 68.5) = 1− 0.9535 = 0.0465
pB = P (X ≤ 68.5)− P (X ≤ 58.5) = 0.9535− 0− 8212 = 0.1323
pC = P (X ≤ 58.5)− P (X ≤ 44.5) = 0.8212− 0.4443 = 0.3769
pD = P (X ≤ 44.5.5)− P (X ≤ 36.5) = 0.4443− 0.2296 = 0.2147
pE = P (X ≤ 36.5)− P (X ≤ 31.5) = 0.2296− 0.1314 = 0.0982
pF = P (X ≤ 31.5) = 0.1314
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The expected value for each grade is found as ei = n · pi, with n = 577.

Table of probabilies, expected and observed frequencies.

Grades A B C D E F
Probability under the null 0.0465 0.1323 0.3769 0.2147 0.0982 0.1314
Expected 26.8 76.3 217.5 123.9 56.7 75.8
Observed 38 80 193 131 86 49

The test statistic is
X2 =

k∑
i=1

(oi − ei)2

ei

which is approximately χ2 distributed with k − 1 degrees of freedom, where k is the number
of groups used. We have used k = 6.

X2 = 4.65 + 0.18 + 2.75 + 0.41 + 15.19 + 9.49 = 32.7

Critical value in the χ2 distribution with 5 degrees of freedom is for α = 0.05 equal to 11.070.

This means that we reject the null hypothesis and do not believe that the total scores are
normally distributed with mean 46.3 and standard deviation 13.2.

Only assuming normality:
Estimate µ and σ2 from data (maximum likelihood). Then X2 is approximately χ2 distributed
with k − 2 − 1 degrees of freedom. In our case we have a χ2 distributed with 3 degrees
of freedom, which has critical value for α = 0.05 equal to 7.815. The estimated mean and
standard deviation from the data are the given values 46.3 and 13.2, which means that our
conclusion would not change.

Problem 3 Happiness

a) The regression coefficient for work is 0.4761. Assume that we look at two individuals
that have scored the same values for sex, love and money. Further assume that one
of the individuals has reported work to have value 1 (seeking other employment) and
the other has 2 (inbetween seeking other employment and OK). Then, on average, we
would expect that the happiness for the last individual is 0.4761 higher than for the first
individual. Keeping the other variables fized, the effect of work on happiness is that
happiness increases on average with 0.4761 units for every one unit increase in the work
variable.
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We can perform a t-test to see if work is significant in the full model (given that the
other variables are present). Test statistic:

t = β̂4

V̂ar(β̂4)
= 0.4761

0.1994 = 2.39

which under the null hypothesis that β4 = 0 (vs. the two-sided alternative that β4 6= 0)
is referred to a t-distribution with n − k − 1 = 34 degrees of freedom (n = 39 is the
number of observations and k = 4 is the number of explanatory variables, and 1 for
the intercept). We use significance level 0.05 and the critical value at level 0.025 (since
two-sided test) in the t34 distribution is approximately 2.03 (found for 35 in the table),
which means that we reject the null hypothesis.
To test if the regression is significant, that is, not all coefficients are zero, we look at
the ANOVA table and the F = 20.83 value. Using a significance level of 0.05 this is
referred to a critical value for the Fisher distribution with 4 and 34 degrees of freedom:
approximately 2.64 (with 35 from the table). This means that the regression is highly
significant.
Residual plots: We see no clear trend in the plot of residuals vs. fitted values, which is
good. The quantile-quantile plot shows no clear deviation from normality, but at least
one outlier is identified.

b) In a multiple regression the least squares estimates for the regression coefficients are
found by solving a set of equations. When the explanatory variables are not orthogo-
nally selected the value for one explanatory variable will influence the estimate of the
regression coefficient for the other. In a design of experiments where explanatory vari-
ables are chosen so that they are independent of eachother (orthogonal columns) the
normal equations will become uncoupled and the regression coefficient estimate for the
explanatory variables will not influence eachother.
We will test a set of two regression coefficients with the aim to compare two models
(model A and model B).This can be done by looking at the difference in sums of squares
of regression for the two models and relate this to the error sums of squares in the largest
model. It is important that model B is a reduced version of model A (i.e. model A and
B both contain the explanatory variables x3 and x4).
Formally: let SSR(modelA) be the regression sums of squares for model A and SSR(modelB)
be the regression sums of squares for model B. Further, SSE(modelA) is the error sums
of squares for the full model A. The difference in number of parameters between model A
and B ism = 2 and n−k−1 = 39−4−1 = 34 is the degrees of freedom for SSE(modelA).
Under the null hypothesis the test statistic F follows a Fisher distribution with m and
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n− k − 1 degrees of freedom.

F =
SSR(modelA)−SSR(modelB)

m
SSE(modelA)

n−k−1

=
93.349−89.484

2
38.087

34
= 1.73

The critical value in the Fisher distribution is 3.27 at level 0.05 and the null hypothesis
is not rejected. This means that model B is preferred to model A.

c) Let SSE be the sum-of-squares of error, SSR be the regression sum-of-squares, and SST
be the total som of squares. Then R2: coefficient of multiple determination is defined as

1− SSE/SST = SSR/SST

and is interpreted as the amount of variability in the data that is accounted for by
the regression. R2 will increase when a regressors are added to the model, even if the
new regressors are independent of the response. The R2

adj is constructed to also include
information about the number of parameters estimated and the number of observations
in the data set.

R2
adj = 1−

SSE
n−k−1

SST
n−1

It is possible that R2
adj takes on a negative value if SSE

SST
> n−k−1

n−1 . R2
adj can not be given

an easy interpretation, other than a penalized version of R2. It is not wise to base model
selection on R2, but R2

adj can be used. Then we may choose the model with the largest
R2

adj.
In the table with results from fitting the 15 models the model with the largest R2

adj is in
row 13, where money, love and work are included in the regression model.
Other things to consider if you were to analyse these data:

• Include interaction terms in the model, maybe the effect of sex is different for the
different levels of love?
• Look at scatter plots, or crosstabulations, beween the regressors to assess the cor-

relation structure.
• Look at other model selection criteria.
• Evaluate model fit using residual plots.

From the table we see that the best model (according to R2
adj) with one regressor is love.

If we are to include two regressors the best model is the one including both love and
work. So, following this path of reasoning love and work are the important factors.
But, this data set is only of size 39 and are based on employed MBA students from
Chicago. Using this sample from a population of employed MBA students from Chicago
to draw conclusions about a general population (e.g. students in Trondheim) might be
a questionable strategy.


