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Tentative solutions to TMA4255 Applied Statistics, May 25, 2012

Problem 1 Vitamin C

a) Hypotheses:
The text states that the researchers wanted to know if there was a difference in the
response measure for the two different supplements, which means that a two-sided hy-
pothesis should be used.

H0 : µ− η = 0 vs. H1 : µ− η 6= 0

Assumptions:
We assume that the data are normally distributed, that is, Xi ∼ N(µ, σ2) and Yj ∼
N(η, τ 2), i = 1, . . . , n1 and j = 1, . . . , n2, and that the two samples are independent.
Equal variances:
Assuming data to be normally distributed we may test the equality of variance by per-
forming an F -test. The null and alternative hypothesis:

H0 : σ2/τ 2 = 1 vs. H1 : σ2/τ 2 6= 1

Let S2
1 and S2

2 be the variances of two independent random samples of size n1 and n2
taken from normal populations with variances σ2 and τ 2, respectively, then

F = S2
1/σ

2

S2
2/τ

2

has an F -distribution with n1−1 and n2−1 degrees of freedom. Under the null F = S2
1/S

2
2

and since we have a two-sided test we reject the null when fobs > fα/2,n1−1,n2−1 or when
fobs < f1−α/2,n1−1,n2−1. We only have tables for small values for α, so we need to use the
relationship

f1−α,ν1,ν2 = 1
fα,ν2,ν1
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From our data we have fobs = 4.442/2.772 = 2.57 and with α = 0.02 (why: only tables
for 0.05 and 0.01 in the textbook) we find from the tables that the critical values are
f0.01,9,9 = 5.35 and f0.99,9,9 = 1/f0.01,9,9 = 1/5.35 = 0.187. Thus we do not reject the
null and conclude that we may assume that the variances are equal. Comment: using
α = 0.05 (not in the tables of the textbook) would give a cut-off of 4.03 - and thus the
same conclusion as for α = 0.02. (Comment: there is a rule of thumb stating that the
ratio of estimated variances should be less than 4 to assume equal variances, given not
too small sample sizes.)
t-test:
We choose to use a pooled estimate for the variance, S2

p = (n1−1)·S2
1+(n2−1)·S2

2
n1−n2−2 and get

sp =
√

9·4.442+9·2.772

10+10−2 =
√

13.7 = 3.7. The t-test is based on the t-statistic

T = X̄ − Ȳ√
1
n1

+ 1
n2
Sp

which we calculate to be tobs = 13.18−8√
1

10 + 1
10 ·3.7

= 5.18
1.65 = 3.13. This is a two-sided test, and

using significance level α = 0.05 we reject the null hypothesis when tobs > tα/2,n1+n2−2 or
when tobs < t1−α/2,n1+n2−2. From the tables we find that the critical values are t0.025,18 =
2.101 and t0.975,18 = −2.101. We have observed a value more extreme than the critical
values and we reject the null hypothesis.
Conclusion:
We have reason to believe that there is a difference in odontoblast cell length for the two
supplements.

b) Assumptions:
The Wilcoxon rank-sum test is a so-called nonparametric test, and have no underlying
parametrical distributional assumptions. However, the distributions need to be continu-
ous and the shape of the distribution for the two populations should be equal. We test
for quality of the location parameter (mean or median). The Wilcoxon rank-sum test is
used for two independent samples.
When data are not normal the Wilcoxon rank-sum test should be used instead of the
two-sample t-test. The Wilcoxon rank-sum test may also be used on normal data, but
will then give lower power than the t-test. The Wilcoxon rank-sum test is robust towards
outliers since only ranks are considered.
Wilcoxon rank-sum test.
We have equal sample sizes and choose supplement 1 to be sample 1. The sum of ranks
for supplement 1 is w1 = 7+8+9+10+11+16+17+18+19+20 = 135. We then need to
calculate u1 = w1−n1 ·(n1 +1)/2 = 135−10 ·11/2 = 80. Since this is a two-sided test we
also need to calculate w2 and u2. w2 = (n1 +n2) · (n1 +n2 +1)/2−w1 = 20 ·21/2−135 =
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210− 135 = 75, and u2 = w2 − n2 · (n2 + 1)/2 = 75− 10 · 11/2 = 75− 55 = 20. To find
the critical value we look to table A.17 in the textbook, and find “two-tailed test” and
α = 0.05 and n1 = 10 and n2 = 10 and read off 23. Thus, reject the null hypothesis if
min(u1, u2) ≤ 23. We have u2 = 20 and thus reject the null hypothesis. If would also be
possible to use approximate inference based on a normal approximation since both n1
and n2 exceeds 8.
Conclusion:
Reject the null hypothesis. We have reason to believe that there is a difference in odon-
toblast cell length for the two supplements.

Analyses in R:

> oj <- c(8.2,9.4,9.6,9.7,10.0,14.5,15.2,16.1,17.6,21.5)
> aa <- c(4.2,5.2,5.8,6.4,7.0,7.3,10.1,11.2,11.3,11.5)
> var.test(oj,aa)

F test to compare two variances

data: oj and aa
F = 2.5701, num df = 9, denom df = 9, p-value = 0.1759
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:

0.6383833 10.3473187
sample estimates:
ratio of variances

2.570128

> t.test(oj,aa,var.equal=TRUE)

Two Sample t-test

data: oj and aa
t = 3.1319, df = 18, p-value = 0.005762
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.705205 8.654795

sample estimates:
mean of x mean of y

13.18 8.00

> wilcox.test(oj,aa)
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Wilcoxon rank sum test

data: oj and aa
W = 80, p-value = 0.02323
alternative hypothesis: true location shift is not equal to 0

Problem 2 Chemical yield

a) Fitted regression model:

ŷ = 181.8 + 2.146x1 − 0.0440x2 + 0.0007774x1x2

Estimate for σ2?
From the fit: S2 = 27.25022 = MSE = 743.
Hypothesis for x2:

β2 = 0 vs. β2 6= 0

The p-value is found to be 0.678. Given that the truth is that β2 = 0 there is a 0.678
probability to observe a test statistic T which is at least as extreme (tobs ≤ −0.42 or
tobs ≥ 0.42) as what we have observed.
Good model?

• Linearity: looking at the scatter plots we see a linear trend in x1 and x1 · x2 vs. y.
We also see that x1 and x2 are approximately independent (this is by construction).
In the plot of the studentized residuals vs. fitted value we see no clear trend, and
thus may assume that linearity in the parameters of the model may be an adequate
assumption.
• Covariates included in the model: Only the x1 covariate gives a p-value below 0.05

when testing each of the covariates, and the x2 is from the scatter plots seen to have
low correlation with y. We may try to refit the model without the x2 term, this will
also change the estimated coefficients for the other covariates. In an overall level
the regression is found to explain more than just the average yield level (p-value for
the regression is 1.8e− 10).
• Normality of errors: looking at the qq-plot for the studentized residuals the assump-

tion of normality seems plausible.
• Explanatory powers: the model explains 93.8% of the variability of the data, which

is a high number.
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Conclusion: the model seem to be adequate, but we may investigate dropping the x2
term from the model and assess the new fit.

b) Mallow’s Cp:(from the textbook)

Cp = p+ (s2 − σ̂2)(n− p)
σ̂2

where p=number of parameters estimated, n=number of observations, s2= estimated
variance (MSE) of model under investigation, σ̂2=estimated variance of the most com-
plete model (Model A).
Missing Cp:

Cp = 3 + (885− 743) · (21− 3)
743 = 6.44

Using Cp:
We are in general looking for a small value for Cp. A rule of thumb is that we would
like a model where Cp≈ p. A too high Cp may indicate a model that is underfitted (not
explaining variability), and a too low Cp may indicate a model that is overfitting the
data. By default Cp= p for the model we use as the most complete model (Model A).
Compare models:
Looking first at Cp we see that model 4 and 5 are good candiates. Both are fitting 3
parameters and should have Cp around 3. If we in addition look at the R2 for only these
two models (since they have the same number of parameters fitted we may use R2 to
compare them), we see that model 5 explains 93.7% of the variance in the data whild
model 4 explains 93.3%. From this I would recommend model 5. But, we also need to
examine residual plots and model fit for this model in order to conclude.

BTW: data were simulated from model 5.

Problem 3 Treatment of tennis elbow

a) Hypotheses:
Let pA, pB and pc be the success probabilities for the three treatments.

H0 : pA = pB = pC vs. H1 : at least one pair differs

We will use a χ2-test for homogeniety, where the test statistic approximately follows a
χ2-distribution with (c − 1) · (r − 1) degrees of freedom. Here c = 3 and r = 2 (or the
other way around), yielding 2 · 1 = 2 degrees of freedom.
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Expected frequencies are calculated as (column totals)·(row totals)/(grand total). The
table of observed and expected frequencies are as follows.

Result A B C Total
Failure 22 (26.8) 14 (27.7) 44 (25.5) 80
Success 41 (36.2) 51 (37.3) 16 (34.5) 108
Total 63 65 60 188

Showing how the Failure and A cell expected value is calculated: 80 ·63/188 = 26.8. The
contribution from this cell to the test statistic is (22−26.8)2

26.8 = 0.86
The test statistic consists of 6 terms, and is given as

X2 = (22− 26.8)2

26.8 + (14− 27.7)2

27.7 + · · ·+ (16− 34.5)2

34.5 = 36.6

The null hypothesis is rejected if the test statistics is larger than χ2
0.05,2 = 5.991. Clearly,

the null hypothesis is rejected.
Assumptions:
This test is an approximate test and should not be used for small sample sizes. The rule
of thumb is that no cells should have expected count equal to or less than 5.
Conclusion:
There is reason to believe at at least two of the treatments have different success rates.

b) Hypotheses:
Let µA, µB and µc be the expected pain-free grip force for each of the the three treatments.

H0 : µA = µB = µC vs. H1 : at least one pair differs

This hypothesis can be tested using one-way analysis of variance. We need to fill in the
ANOVA table (SS, MS, df, F), which can be calculated from the summary statistics.
Let x̄A denote the average and sA the standard deviation of treatment A. Ditto for
treatments B and C. Let x̄ denote the grand mean.

SSA = nA(x̄A − x̄)2 + nB(x̄B − x̄)2 + nC(x̄C − x̄)2

= 63 · (70.2− 69.0)2 + 65 · (83.6− 69.0)2 + 60 · (51.8− 69.0)2

= 31697
SSE = (nA − 1)s2

A + (nB − 1)s2
B + (nC − 1)s2

C

= 62 · 25.42 + 64 · 22.92 + 59 · 23.02

= 104773
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Source SS df MS F
Treatment 31697 2 15849 28
Error 104773 185 566
Total 136470 187

The F statistic, here observed to be 28, should be compared with the critical value
f0.05,2,185 = 3.0, and we thus reject the null hypothesis.
Assumptions:
The one-way ANOVA model is

Yij = µ+ αi + εij

where the error terms are independent and normally distributed with the same variance
across treatment groups.
Conclusion:
There is reason to believe that the expected pain-free grip force is not the same for all
the treatments.

c) Remark: n1 = n2 = n3 = 63 only here.
If you did b) above you may use the pooled estimate for σ, which is

√
MSE from the

ANOVA, s =
√

566 = 23.8 and the same n = 63 for all treatment groups. But, stricktly
speaking we should recalculate σ to be sp =

√
(nA−1)s2

A+(nB−1)s2
B+(nC−1)s2

C

nA+nB+n3−3 = 23.8. So, no
real change here.
Tukey’s method: we construct confidence intervals for expected differences (i, j):

x̄i − x̄j ± q(α, 3, 185) ·
√
s2/n

Here q(0.05, 3, 185) = 3.32 from Appendix A.12 from the textbook, so q(0.05, 3, 185) ·
s/
√
n = 3.32 · 23.8/

√
63 = 10.0. This gives the following three confidence intervals at

overall level 95%.

A vs B :70.2− 83.6± 10.0 = [−23.4,−3.4]
A vs C :70.2− 51.8± 10.0 = [8.4, 28.4]
B vs C :83.6− 51.8± 10.0 = [21.8, 41.8]

At overall significance level 5% there are signficant differences between all treatment
pairs.
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Assumptions:
The same assumptions as for the one-way ANOVA need to be made. This is a post hoc
test expecially tailored for performing all pairwise comparisons in the one-way ANOVA.
What is the individual confidence level used for each of the comparisons?
If we would make individual confidence intervals confidence level (1− δ) we would use a
t-interval:

x̄A − x̄B ± tδ/2,185 ·
√

2 · s2/n

Comparing this to the Tukey interval we see that the factor
√

2 for the t-interval is
included in the critical value q. The equation we need to solve is

tδ/2,185 ·
√

2 = 3.32
tδ/2,185 = 3.32/

√
2 = 2.348

We consult the table for critical values for the t-distribution and find that t0.01,∞ = 2.326
and t0.0075,∞ = 2.432. This means that δ/2 is between 0.01 and 0.0075, meaning that
the individual CI level is between 1 − 0.01 · 2 = 0.98 and 1 − 0.0075 · 2 = 0.985. The
individual CI level will be in the interval [98%, 98.5%].

d) Let X̄A be the mean of a random sample with physiotherapy and X̄C the mean of a
random sample with wait-and-see. A natural estimator for γ is

γ̂ = X̄A − X̄C

X̄C

We turn to first order Taylor approximations with

h(X̄A, X̄C) = X̄A − X̄C

X̄C

= X̄A

X̄C

− 1

∂h(X̄A, X̄C)
∂X̄A

) = 1
X̄C

∂h(X̄A, X̄C)
∂X̄C

) = −X̄A

X̄2
C

where the random variable X̄A has E(X̄A) = µA and Var(X̄A) = σ2
A/nA, and X̄A has

E(X̄C) = µC and Var(X̄C) = σ2
C/nC .
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Define

h′A(µA, µC) = ∂h(X̄A, X̄C)
∂X̄A

|X̄A=µA,X̄C=µC
= 1
µC

h′C(µA, µC) = ∂h(X̄A, X̄C)
∂X̄C

|X̄A=µA,X̄C=µC
= −µA

µC

The first order Taylor approximation for two independent samples:

E(h(X̄A, X̄C)) ≈ h(µA, µC) = µA
µC
− 1 = µA

µC
− 1

Var(h(X̄A, X̄C)) ≈ (h′A(µA, µC))2Var(X̄A) + (h′C(µA, µC))2Var(X̄C)

= ( 1
µC

))2 · σ2
A/nA + (−µA

µ2
C

)2 · σ2
C/nC

Estimates using numerical values nA = 63, nC = 60, µ̂A = x̄A = 70.2, µ̂C = x̄C = 51.8,
σ̂2
A = s2

A = 25.42, σ̂2
C = s2

C = 23.02 are as follows.

Ê(h(X̄A, X̄C)) ≈ 70.2
51.8 − 1 = 0.355

V̂ar(h(X̄A, X̄C)) ≈ ( 1
51.8)2 · 25.42/63 + ( 70.2

51.82 )2 · 23.02/60

= 0.0038 + 0.0060 = 0.0098

We estimate a 0.355 increase in mean pain-free grip force when comparing wait-and-see
with physiotherapy, with an estimated variance of 0.0098, and hence estimated standard
deviation of 0.099. Thus a 35.5% increase and a 0.99 percent point standard deviation
for the increase.
If the samples were not independent this will not influence the estimated increase in
mean pain-free grip force, but will change the estimated variance. To the formula under
independence a last term is added.

Var(h(X̄A, X̄C)) ≈ [h′A(µA, µC)]2Var(X̄A) + [h′A(µA, µC)]2Var(X̄C)+
2 · h′A(µA, µC) · h′C(µA, µC)Cov(X̄A, X̄C)

If the dependence is positive (positive covariance between pain-free grip forces) then
the estimated variance will decrease (as compared with the independence case) since the
h′C(µA, µC) is negative, while for negative correlation the estimated variance will increase.


