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Problem 1 Reiki treatment of Fibromyalgia

a) From this study can we conclude that the VAS score at enrollment (e.g. before treatment)
differs between groups, A, B, C and D?

Write down the null hypothesis and the alternative hypothesis, perform one hypothesis test
based on the descriptive measures above. Use significance level α = 0.05.
Specify the assumptions you make and the conclusion of the test.

Hypothesis:

H0 : the mean pain is equal across groups vs. H1 : the groups are not equal

or

H0 : µA = µB = µC = µD vs. H1 : at least on pair differs

This hypothesis can be tested using one-way analysis of variance. We need to fill in the
ANOVA table (SS, MS, df, F), which can be calculated from the summary statistics. Let x̄A
denote the average and sA the standard deviation in group A. Ditto for groups B, C and D.
Let x̄ denote the grand mean.

SSA = nA(x̄A − x̄)2 + nB(x̄B − x̄)2 + nC(x̄C − x̄)2 + nD(x̄D − x̄) (1)
= 0.25 + 0 + 4 + 2.25 = 6.5 (2)

SSE = (nA − 1)s2
A + (nB − 1)s2

B + (nC − 1)s2
C + (nD − 1)s2

D (3)
= (25− 1)2.22 + (25− 1)2.62 + (25− 1)2.12 + (25− 1)2.42 = 522.48 (4)
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SS df MS F
Group 6.5 3 2.17 0.39
Error 522.48 96 5.44
Total 528.98 99

Critical value: f0.05,3,96 = 2.70. (f0.05,3,60 = 2.76 and f0.05,3,120 = 2.68)
Assumptions:
The one-way ANOVA model is

Yij = µ+ αi + εij , (5)

where the error terms are independent and normally distributed with the same variance across
treatment groups.
Conclusion: we can not reject H0, we have no reason to believe that there are difference in the
VAS score before enrollment between the different groups.

b) Based on these data, do we have reason to believe that Reiki treatment has an larger effect on
pain, measured as VAS score, than placebo treatment given by an actor? Write down the null
hypothesis and the alternative hypothesis, choose a test statistics and perform a hypothesis
test. Use significance level α = 0.05.
Specify the assumptions you make.

Assumptions:

• Independent samples
• Each sample comes from a normally distributed population.
• Equal variance in the samples

Then we can use a unpaired t-test.

We are interested in finding out if Reiki treatment had an larger effect on pain than the placebo
treatment. A negative value of the difference µX -µY would indicate a lower VAS score for Reiki
treatment than for the placebo treatment.
In hypotheses testing the alternative hypothesis tells us what predictions we made about the
effect and the predicted direction of this effect. If the alternative hypothesis predicts direction
of the effect we have a one-sided hypothesis.
A one-sided hypothesis in our problem can be written as

H0 : µX = µY vs. H1 : µX < µY .

However, it does not indicate the direction of the effect, positive or negative (that is, it is not
given a specific value of d0 (µX − µY < d0)).



TMA4255 Applied Statistics, 9 August 2014 Page 3 of 10

It may be more useful here to test a two-sided hypothesis

H0 : µX = µY vs. H1 : µX 6= µY

H0 : µX − µY = d0 vs. H1 : µX − µY 6= d0,

where d0 = 0 and we do not make a choice over the direction that the effect takes (could be
negative or positive). It is appropriate when we predict an effect, but we don’t predict the
direction of the effect.

The two-sided hypothesis is most appropriate to use here, however, the one-sided hypothe-
sis is ok to use, since we here may not be so interested in a larger effect in the wrong direction.

With equal variance between the groups we can use the pooled estimate of the standard devi-
ation:

T = D̂

SE(D̂)
= X̄ − Ȳ

sp

√
1
nX

+ 1
nY

(6)

T = −0.4
1.23

√
1/25 + 1/25

= −1.149767 (7)

Two-sided hypothesis:
Reject H0 if |T | > tα/2,nX +nY −2, tα/2,48 ≈ 2.021 (tα/2,40 = 2.021 tα/2,60 = 2.000)
One-sided hypothesis:
Reject H0 if T > tα,48 ≈ tα,40 = 1.684.
Conclusion: we can not reject H0, we have no reason to believe that Reiki treatment has an
effect/larger effect on pain, measured in VAS score, than placebo treatment given by an actor.
The treatments doesn’t differ.

Problem 2 Cheddar cheese Taste

a) From the p-value for the Acetic coefficient, β1, given in Figure 1, the acetic acid variable is
significant at a 5% significance level.

What can you conclude from the given p-values in Figure 1, 2 and 3 about the three chemicals
influence on taste?

P-values comes from testing each of the hypotheses:

H0 : β1 = 0 vs. H1 : β1 6= 0
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H0 : β2 = 0 vs. H1 : β2 6= 0

H0 : β3 = 0 vs. H1 : β3 6= 0

We see that all the three variables has a significant effect on the taste of cheddar cheese,
p < 0.05.

Comment on the values of R2 in Figure 1, 2 and 3.

We observe that the sum of R2 from the 3 different models are larger than 100%. The three
models together explains more than 100% of the variability in the data. This is of course not
possible, and there must be some common information in the three variables x1, x2 and x3.
This would mean that the three covariates x1, x2, x3 are correlated.

Find a 90% confidence interval for β1.

CI for β1:
[coefficient± tα/2,(n−2)SE(coefficient)],

t0.05,28=1.701
[15.648± 1.701 · 4.496] = [8.000304, 23.2957]

What is the predicted taste score for a Acetic acid value of x0
1 = 7?

y = −61.5 + 15.6 · x1

y = −61.5 + 15.648 · 7 = 48.036

b) Find an appropriate estimate for σ, and calculate a 90% confidence interval for σ in the re-
gression model in Equation (1) (Hint: use that SSE/σ2 is chi-square distributed).

An appropriate estimate for σ is the estimated standard deviation in the regression model,
s = 13.8212. Here s =

√
1

n−2SSE.
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Use that SSE/σ2 ∼ χ2
n−2 for a simple linear regression. Confidence interval for σ2:

P (χ2
α/2,28 <

SSE

σ2 < χ2
1−α/2,28) = 0.90

P (41.337 < SSE

σ2 < 16.928) = 0.90

P ( SSE41.337 < σ2 <
SSE

16.928) = 0.90

s2 = 13.822 = 190.9924
s2 = SSE/(n− 2)

SSE = (n− 2) · s2 = 5348.716

i.e. CI for σ2:
(129.3929, 315.9686)

and to find CI for σ we take the square root of the interval limits.

CI for σ:
(11.3751, 17.7755)

How can we use this confidence interval to test the null hypothesis H0 : σ = 1? Write down
the alternative hypothesis, give the conclusion of this test and the significance level.

Hypothesis:

H0 : σ = 1 vs. H1 : σ 6= 1

is tested with significance level 0.10 (i.e. 0.90). Rejecting when 1 is not in the 90% CI for σ.
So we reject H0, σ is not equal to 1.
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c) Explain the term multicollinearity. Could this be a problem in the regression model in Equa-
tion (4)?

If one covariate is correlated with another covariate then we have collinearity. (Not linear-
ity - but a tendency of linear dependence.). With several correlated covariates we call this
multicollinearity.
We have that B = (XTX)−1XTY , Cov(B) = σ2(XTX)−1. When we have multicollinearity
XTX may have large diagonal elements. The covariance of B may be large since XTX may
be nearly singular.
This will make it difficult to know which variable to include in the model (several variables
give much of the same information). The estimate of β1 in a model with only x1 will change if
x2 is also included into the model. This will also make prediction difficult since the prediction
error will increase rapidly.
Comment on the correlation matrix in Figure 5 and pairwise scatter plot in Figure 6.

We see from Figure 5 that the correlation between each pair of chemicals is high, exceed-
ing 0.6.

From the three-variable regression models in Figure 4 we see that acetic acid, X1 is not signifi-
cant, but in Figure 1 (Equation (1)) X1 was significant. What may be the reason behind this?
Justify your answer.

Since we have correlation between each pair of the variables in the model, multicollinearity
may be a problem. So X1 was significant in the model in Equation (1), but as we added more
variables/regressors in the regression model (Equation (4)), the X1 variables changed as these
variables/regressors are dependent on each other (correlated), xTj xi 6= 0.

This is an observational study. Would it be possible to design an experiment (design of exper-
iment) to investigate the problem under study? Elaborate.

Design of experiment (DOE) creates orthogonality, where regressors are independent of each
other, and xTj xi = 0. Here, the estimate of the coefficient are not changed if we change the
model. However, it may be difficult (or impossible) to design a study here, making cheeses
with given x1, x2 and x3 values.

Problem 3 Toy plastic bricks

Day i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of defects 3 3 1 3 4 6 4 6 4 4 5 2 3 1
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a) Make the appropriate control chart to control the probability of defects, p. Use all the data in
the table above to calculate control limits (use 3σ limits).
Can we assume that the number of defects in each sample is approximately normally dis-
tributed?

This is a p-chart (with 3σ limits): defect or not defect.

Estimate for p: p̄ = 1
m

∑m
i=1 p̂i, where p̂i is the proportion of defects in the sample from

day i, Xi/n, i = 1, ...14. m is the number of timepoints in control, Xi is the number of defects
in sample i, assume Xi ∼ bin(n, p), and n is the rational subgroup/trials is n = 250.

1
14

14∑
i=1

( 3
250 + 3

250 + 1
250 + ...+ 1

250) = 0.014. (8)

Control limits are estimated as

[LCL,UCL] = [p̄± 3
√
p̄(1− p̄)

n
]

[0.014± 3
√

0.014(1− 0.014)
250 ] = [−0.0083, 0.0363]

We see that LCL is negative. Since the p value can never be negative, the LCL should never
be negative, and the LCL will be set to 0. See Walpole, Myers, Myers and Ye: “Probability
and Statistics for Engineers and Scientists” chapter 17.

The control limits are then set to [0, 0.0363].

Is the number of defects in a sample approximately normally distributed?

See Walpole, Myers, Myers and Ye: “Probability and Statistics for Engineers and Scientists”
chapter 6.5, 8.4. A binomial random variable can be approximated by the normal distribution
if n is large, with expectation µ = np and variance σ2 = np(1 − p). We get the largest value
of σ2 by setting p = 0.5. Then always σ2 ≤ n/4. Demanding that σ2 ≥ 5 (or np ≥ 5 and
n(1−p) ≥ 5) we automatically secured that n ≥ 20 which given the central limit theorem gives
us an good approximation.

We have that Ê(Xi) = np̄ = 3.5 < 5, so we may not assume that the number of defects
are approximately normally distributed.

b) How many observations, n, in each rational subgroup is needed to detect a change from p = 0.2
to p1 = 0.21?
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1. The problem doesn’t specify the probability needed to detect a change. We will use
probability 0.5, but other choices are of cause possible.

2. We will assume that p̄ = p is known so that the upper limit of the control chart is
UCL = p+ 3

√
p(1−p)
n .

3. When the true probability of defect is p1 we have Xi ∼ bin(n, p1) and p̂i = Xi

n has
E(p̂i) = p1, V ar(p̂i) = p1(1−p1)

n .
4. We want to find n so that P (p̂i > UCL) = 0.5. (Actually we want P (p̂i > UCL)+P (p̂i <
LCL) = 0.5, but the latter probability will be very small when the true p1 is larger than
p.)

5. P (p̂i > UCL) = 0.5

P (p̂i > UCL) = P ( p̂i − p1√
p1(1−p1)

n

>
UCL− p1√

p1(1−p1)
n

)

≈ 1− Φ(UCL− p1√
p1(1−p1)

n

),

since we here may assume normality when np > 5 & n(1− p) > 5.

1− Φ(UCL− p1√
p1(1−p1)

n

= 0.5

UCL− p1 = 0⇔ UCL = p1

When we have probability 0.5 to detect a shift from p to p1 UCL need to be set at
p1.

6. What does this mean wrt n?

UCL = p+ 3
√
p(1− p)

n

and
UCL = p1
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p+ 3
√
p(1− p)

n
= p1 (9)

p(1− p)
n

= (p1 − p)2

32 (10)

n = 9p(1− p)
(p1 − p)2 . (11)

7. When p = 0.2 and p1 = 0.21 we have

n = 9 · 0.2(1− 0.2)
(0.21− 0.20)2 = 14400. (12)

If a probability of detection different from 0.5 is chosen the calculations become much
more difficult.

Problem 4 Obesity and alcohol intake

a) Hypothesis:

H0 : column probabilities are the same for each row vs. H1 : not so

H0 : pLow = pAverage = pHigh vs. H1 : at least one differ.

We will use a χ2-test for homogeneity, where the test statistics approximately follows a χ2-
distribution with (c − 1)(r − 1) degrees of freedom. Here c = 4 and r = 3, yielding 3 · 2 = 6
degrees of freedom.

Expected frequencies are calculated as (columns totals)·(row totals)/(grand total). The table
of observed and expected values are as follows:

Alcohol Intake
Obesity 0 1-2 3-5 6+ Total
Low 45(39,32) 45(38,31) 41(45,03) 34(42,34) 165
Average 39(38,36) 32(37,38) 46(43,94) 44(41,32) 161
High 33(39,32) 37(38,31) 47(45,03) 48(42,34) 165
Total 117 114 134 126 491
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Showing how the Low and 0 cell expected value is calculated: 117 · 165/491 = 39.32. The
contribution from this cell to the test statistic is (45−39.32)2

39.32 = 0.82. The test statistic consists
of 12 terms, and is given as X2 = (45−39.32)2

39.32 + ...+ (48−42.34)2

42.34 = 6.952

The null hypothesis is rejected if the test statistics is larger than χ2
0.05,6 = 12.592.

Conclusion: clearly we can not reject the null hypothesis and we have no reason to believe that
the proportions of Low, Average and High obesity differ with respect to alcohol intake.


