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Problem 1 Darwins corn plants

a) First we inspect the data:
Do we have independent samples?
The two samples are paired by design, pairs of cross-fertilization (X1i) and self-fertilization
(X2i) plants grown together under identical conditions. The observations of height of the cross-
fertilization and self-fertilization plants are correlated. This means that we cannot use methods
that are designed for independent samples, and we need to choose a method for paired samples.
This can be done by forming differences, Di = X1i −X2i and using one-sample methods.
Do we have normality?
When X1i and X2i are assumed normally distributed, X1i ∼ N(µ1, σ

2) and X2i ∼ N(µ2, σ
2),

i = 1, ..., 15, it follows that the difference Di = X1i − X2i also can be assumed normally
distributed, N(µ, σ2) and D̄ = 1

15 (
∑
x1i−

∑
x2i ∼ N(µD, σ

2

15 ). Di is i.i.d (although X1i−X2i
are dependent). With these assumptions we can use a t-test for the difference, Di (t-test for
paired data).
We want to test if the mean height of the cross-fertilized plants are larger than the mean hight
of the self-fertilized plants. The hypothesis can be written as

H0 : µ1 = µ2 vs. H1 : µ1 > µ2

or define µD = µ1 − µ2

H0 : µD = 0 vs. H1 : µD > 0

We test this hypothesis by performing a t-test based on the test statistic

T = D̄

SD/
√
n
,

where SD =
√

1
14

∑15
i=1(Di − D̄)2. Under H0 T ∼ tn−1. It is given that d̄ = 21.53, sd = 38.29

and n = 15.
tobs = 21.53

38.29/
√

15
= 2.177.

This is a one-sided test, and using significance level α = 0.05 we reject the null hypothesis
when tobs > tα,n−1. From the tables we find that the critical values are t0.05,14 = 1.761.
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Conclusion: We reject the null hypothesis and we have reason to believe that cross-fertilization
plants are taller than self-fertilization plants.
We could have performed a non-parametric Wilcoxon signed-rank test for paired data in a),
however, when data is normally distributed this test has lower power than the t-test.

b) When we assume that X1i and X2i are not normally distributed we can perform a non-
parametric test. If we assume nothing about the data, we can perform a sign test for paired
data. We test the hypothesis that the median of the differences (m̃D = m̃1−m̃2) is larger than
zero.

H0 : m̃1 = m̃2 vs. H1 : m̃1 > m̃2

or written as

H0 : m̃D = 0 vs. H1 : m̃D > 0

We test this hypothesis by performing a sign-test based on a binomial variable test statistic
X with n = 15 trials and success probability p = 1

2 . We reject the null hypothesis in favor of
the alternative hypothesis only if the proportion of plus signs is sufficiently greater than 1/2
(when x is large).
We compute the differences, di

58,−67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60,−48.

Replace each positive difference by a "+" symbol and each negative difference by a "-" symbol
(discard any zero differences) we obtain the sequence

+,−,+,+,+,+,+,+,+,+,+,+,+,+,−,

let x = 13 and n = 15.
We can calculate the p-value of this test as P = P (X ≥ 13 when p = 1/2) = 1−

∑12
x=0 b(x; 15, 1

2 ) =
1− 0.9963 = 0.0037. The p-value is therefore smaller than the significance level, we can reject
the null hypothesis.
Since n > 10 we may also use an normal approximation, since np = nq > 5, but this will be
an approximation. We may use the normal approximation with

µ = np = 15 · 0.5 = 7.5

and
σ = √npq =

√
15 · 0.5 · 0.5 = 1.936492,

we can find that

z = 13− 7.5
1.936492 = 2.84
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(we can also use 12.5 (instead of 13) to correct for that the binomial/discrete distribution is
approximated by a continuous/normal distribution). We get the p-value P = P (X ≥ 13) ≈
P (Z ≥ 2.84) = 1 − P (Z ≤ 2.84) = 1 − 0.9977 = 0.0023, which leads to the rejection of
the null hypothesis. We have reason to believe that the cross-fertilized plants are taller than
self-fertilized plants.
The sign test are known to have lower power to detect any significance compared to the t-test.
We see that the p-value is higher for the sign test (the binomial and normal approximation
gave approximate the same p-values) than the t-test. The advantage of the sign test is that it
can always be used as it is based on no assumptions.

Problem 2 House sparrows

a) Hypothesis:

H0 : β1 = 0 vs. H1 : β1 6= 0

We test this hypothesis by performing a t-test based on the test statistic

T = β̂

ŜE(β̂1)

From the MINITAB output we find that the estimated coefficient β̂1 = 0.11584 and estimated
standard deviation of the regression coefficients β1 is ŜE(β̂1) = 0.06609, which give us the test
statistic tobs = 0.11584

0.06609 = 1.75.
This is a two-sided test, and using significance level α = 0.05 we reject the null hypothesis
when tobs > tα/2,n−k−1 or when tobs > t1−α/2,n−k−1, where n = 901 and k = 3 is the number
of parameters estimated. From the tables we find that the critical values are t0.025,897 = 1.96
and t0.0975,897 = −1.96. The observed value are not more extreme than the critical values and
we do not reject the null hypothesis.
Conclusion: β1 is not significant, and x1 do not explain a significant portion of the variation
in the response.
R2, is the coefficient of multiple determination and is interpreted as the amount of variability
in the response that is accounted for by the regression and is defined as

1− SSE/SST = SSR/SST

where SSE is the sum-of-squares of error, SSR is the regression sum-of-squares, and SST is
the total sum of squares. The R2 found in the MINITAB output as R − Sq = 24, 1%. The
regression is found to explains 24.1% of the variation in the data. A better goodness of fit
measure is the adjusted R2, when comparing models.

b) The estimated variance in the regression model, s2 = SSE/(n − k − 1) is an appropriate
estimator for σ2. The estimated standard deviation in the regression model (model error
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variance) is found in the MINITAB output to be S = 1, 54791. Estimated variance
s2 = 1.547912 = 2.4.
Find the error sum of squares, SSE, which is the variation in response that remains unexplained
after taking into account the covariates.

s =
√
SSE/(n− k − 1)⇒ SSE = s2 · (n− k − 1)

gives us
SSE = 1.547912 · 897 = 2149.24.

Find the mean error sum of squares, MSE, MSE = s2:

MSE = SSE/DF = 2149.24/897 = 2.4.

Find the total sum of squares, SST , the total variation in response:

SST = SSR+ SSE = 682.54 + 2149.24 = 2831.78.

Find the F test statistics, F , used to test if the regression is significant

H0 : β1 = β2 = β3 = 0 vs. H1 : at least one different from zero

F =
SSR
k

SSE
(n−k−1)

=
SSR
k

s2 =
682.54

3
1.547912 = 94.95.

The p-value of the test is P = 0.000, which indicates that we can reject the null hypothesis and
assume that at least one of the covariates are nonzero and that the regression is significant.
This is seen in Figure 1, where both x2 and x3 is significant (p-value smaller than α = 0.05).
Below is the values for the question marks filled in

Analysis of Variance

Source DF SS MS F P
Regression 3 682,54 227,51 94,95 0,000
Residual Error 897 2149,24 2,40
Total 900 2831,78

Figure 1: Printout from statistical analysis of the house sparrow data set.

c) The estimated regression model is found from the output in Figure 1

ŷ = 4.97 + 0.116 · x1 − 0.663 · x2 + 0.715 · x3
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A point estimate ŷ0 can be found for observed tarsus length x0
1 = 20, bill depth x0

2 = 8 and
total badge size x0

3 = 19.

ŷ0 = 4.97 + 0.116 · 20− 0.663 · 8 + 0.715 · 19 = 15.571.

It is given that the estimated standard deviation of ŷ0 is 0.097.
A 95% confidence interval for the expected value of ŷ0 (E(Y|X0) = µY|x0) can be calculated
as

ŷ0 ± t0.025,897 · s
√

xT
0 (xTx)−1x0,

where ŜD(ŷ0) = s
√

xT
0 (xTx)−1x0. The critical value is t0.025,897 = 1.96, we have

s
√

xT
0 (xTx)−1x0 = 0.097.

A 95% confidence interval for ŷ0:

(15.571± 1.96 · 0.097) = (15.38088, 15.76112).

Calculate a 95% prediction interval for y0:

ŷ0 ± t0.025,897 · s
√

1 + xT
0 (xTx)−1x0.

We have that
xT

0 (xTx)−1x0 = ( 0.097
1.54791)2 = 0.003927.

A 95% prediction interval for y0:

15.571± 1.96 · 1.54791
√

1 + 0.003927 = (12.53115, 18.61085).

What is the difference in interpretation of the two intervals?
We are interested in finding a 95% confidence interval on the mean response, µY|x0 = β0 +
β1x

0
1 + β2x

0
2 + β3x

0
3 for a set of values x0. That is an interval within which we can say with

95% certainty that the mean response will fall.
ŷ is an unbiased estimate for the mean response, which we are interested in finding a confidence
interval for. ŷ0 is therefore a estimate for mean response for a set of values x0.
The 95% prediction interval is an interval within which we can say with 95% probability that
a new observed response, y0, for a set of values x0 will fall.
The confidence interval for the mean response gives us the quality of predicted response, y0.
Prediction intervals account for the variability around the mean response inherent in any
prediction, making the prediction interval wider than the confidence interval.

d) There are four principal assumptions made in the linear regression model in Equation (1).
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1. Linearity of the relationship between response and covariates.
2. Independence of the errors, εi (no serial correlation).
3. Homoscedasticity (constant variance) of the errors, εi. This means constant variance

versus time and versus fitted value (or covariates).
4. Normality of the error, εi, distribution.

We can not observe this random error term, and we therefore use the residuals (standardized)
(ei = yi − ŷi) to test the assumptions from the fitted regression.

1. Detecting nonlinearity is usually most evident in a plot of the residuals versus fitted values.
If linear, the points should be symmetrically distributed around a horizontal line. A curve-
like pattern may indicate that the model makes systematic errors making unusually large
or small predictions. Also residuals versus covariates can indicate nonlinearity.
In Figure 3 upper right panel we see that there seems to be a trend in the residuals not
all symmetrical around 0. We have to look further at plots of residuals vs covariate to
determine further the linearity of the residuals (not included in the problem).

2. By looking at the standardized residuals versus observation order we can detect correlation
in the residuals. If there are no correlation, the residuals should be scattered randomly
around 0, and there should be no trend.
In Figure 3 lower right panel we see that there seems to be some small trend in the
residuals, a curve in the residuals indicating a correlation over the observations.

3. Non constant variance can be detected by looking at for instance standardized residuals
versus fitted values. Non constant variance is indicated by a trend, most often a "fan"
shape. Also residuals versus covariates can indicate non constant variance.
In Figure 3 upper right panel we see that there is some indication of a "fan" shape, where
the residual are larger for larger values of the fitted values.

4. A normal probability plot of the residuals (QQ-plot) is the best test for normally dis-
tributed errors. If the error distribution are normal the residual points should fall close
to the diagonal line. An S-shaped pattern of deviations from the diagonal line indicates
too many/too few large errors and a bow-shaped pattern indicates that the residuals are
not symmetrically distributed (see also histogram of residuals). Violations of normality
can be due to two reasons that the distributions of the response and/or covariates are sig-
nificantly non-normal, and/or the linearity assumption is violated. A Anderson-Darling
normality test can also be used to test for normality.
In Figure 3 upper left panel we see that some of the points lies outside the 95% confidence
interval, and a S-shaped pattern i evident. A p-value of < 0.05 of the Anderson Darling
test, indicates that the residuals are not normally distributed. Also the histogram lower
left panel indicates a skewed distribution of the residuals.

How do you think this effects the results given in the outputs?

1. If the data are not linearly related and you fit a linear model, your predications are likely
to have serious errors, especially when you extrapolate beyond the range of the sample
data.
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2. Violation of nonrandom residuals indicates that the value of one observation is not com-
pletely independent of another observation. This often indicates a mis-specified model.
This may lead to biased standard errors and hence significance tests may not be valid.

3. If the variance of error is increasing over the fitted values, the confidence intervals may
be to narrow when we predict for values beyond the range of the data. Non constance
variance may lead to biased standard errors and hence significance tests may not be valid.

4. Non normal residuals may effect the estimation of coefficients and calculation of confidence
intervals. If there are some large outliers (the error distribution is skewed) these outliers
can exert a disproportionate influence on the estimation of coefficients (that is based
on minimization of squared error). The calculation of confidence intervals and various
significance tests for coefficients are all based on the assumptions of normally distributed
errors. If the error distribution is significantly non-normal, confidence intervals may be
too wide or too narrow.

Conclusion: Both the standard error, and estimated coefficient may be biased and therefore
the conclusion of the hypothesis tests may be wrong. The prediction and confidence interval
may also not be trustworthy since we do not have normally distributed errors.
A transformation may correct for the non-normal errors (transformation may often help both
non-normality and non-constant variation of the random errors) or a new specification of the
model.
All models are wrong, some are useful.

Problem 3 Forging of piston rings

Based on 21 samples, each based on five observations (thus a rational subgroup size of n = 5)
assumed to be in control, we find ¯̄x = 74.001 and s̄ = 0.00995.

a) Construct a S-chart and a X̄-S-chart (with 3σ limits).
S-chart has limits

S̄ ± 3 S̄
c4

√
1− c2

4

[B3S̄, B4S̄]

According to table A22 (page 766), and for rational subgroup size n = 5, we have c4 = 0.94,
B3 = 0 and B4 = 2.089. Thus, the S-chart has lower limit equal to 0 and upper limit equal to
2.089 · 0.00995 = 0.020785.
X̄-S-chart has limits

¯̄X ± 3 S̄

c4
√
n

= ¯̄X ±A3S̄

According to table A22 (page 766), and for rational subgroup size n = 5, we have c4 = 0.94
and A3 = 1.427. Thus, the chart has lower limit equal to 74.001 − 1.427 · 0.00995 = 73.9868
and upper limit equal to 74.001 + 1.427 · 0.00995 = 74.0152
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The figure below is the new samples with the control limits drawn in
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The new samples are within the control limits for the S-chart (variance is in control), but
the new samples are outside the control limits for the X̄-S-chart. The process mean is out of
control, not stable for sample (37)38-40. .
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Problem 4 Good and bad husbands and wives

a) Hypothesis:

H0 : the temperament of the husband and wife are independent vs. H1 : not so

We will use a χ2-test for independence, where the test statistics approximately follows a χ2-
distribution with (c − 1)(r − 1) degrees of freedom. Here c = 2 and r = 2, yielding 1 · 1 = 1
degrees of freedom.

We need to calculate the expected frequency for each entry of the contingency table, which
again is based on calculating the probability for each grade under the null hypothesis.
P(good husband ∩ good wife)= P(good husband) · P(good wife)
P(bad husband ∩ good wife)= P(bad husband) · P(good wife)
P(good husband ∩ bas wife)= P(good husband) · P(bad wife)
P(bad husband ∩ bad wife)= P(bad husband) · P(bad wife)

̂P(good wife) = 24+34
111 = 0.523.

̂P(bad wife) = 1− ̂P(good wife) = 0.477.
̂P(good husband) = 24+27

111 = 0.459.
̂P(bad husband) = 1− ̂P(good husband) = 0.5405.

The expected value for each table entry is found as ei = pi · n , with n = 111.

e11 = ̂P(good husband) · ̂P(good wife) · 111 = 26.65
e21 = ̂P(bad husband) · ̂P(good wife) · 111 = 31.35
e12 = ̂P(good husband) · ̂P(bad wife) · 111 = 24.35
e22 = ̂P(bad husband) · ̂P(bad wife) · 111 = 28.65

Expected frequencies can also be calculated as (columns totals)·(row totals)/(grand total). The
table of observed and expected values (e) are as follows:

Good wife Bad wife Total
Good husband 24 (26.65) 27 (24.35) 51
Bad husband 34 (31.35) 26 (28.65) 60

Total 58 53 111

The test statistics consists of 4 terms and is given as

X2 = (24−26.65)2

26.65 + ...+ (26−28.65)2

28.65 = 1.020

The null hypothesis is rejected if the test statistics is larger than χ2
0.05,1 = 3.841.
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Conclusion: clearly we can not reject the null hypothesis and we have no reason to believe that
the temperament of husband and wife are dependent of each other.


