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Problem 1 Manufacturer of fertilizers

a) Are these independent samples?
Yes, since the two fertilizer samples are not related (one fertilizers were given to n1 plants
and the other fertilizer to different n2 plants, grown under identical conditions to be able to
compare the two fertilizers).
Do we have normality?
This is a small sample and we need to check the normality assumption from both populations.
However, normality is assumed in the problem.
Do the populations have equal variance? Yes, since sx1 and sx2 are not that different. A
test could be performed for testing equal variance. However, equal variance is assumed in the
problem.
With these assumptions we can use a two-sample t-test with equal variance (two-sample t-test
with pooled variance).
We want to test if is a difference in the effect of new and old fertilizers on plant height? The
hypothesis can be written as

H0 : The mean growth heights of the plants given the two types (X1 and X2) of fertilizers are the same

vs.

H1 : The mean growth heights of the plants given the two types (X1 and X2) of fertilizers are different

or
H0 : µ1 = µ2 vs. H1 : µ1 6= µ2

or written as
H0 : µ1 − µ2 = 0 vs. H1 : µ1 − µ2 6= 0
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We test this hypothesis by performing a two sample t-test with equal variance based on the
test statistic

T = (x̄1 − x̄2)− d0

spooled/
√

1/n1 + 1/n2
,

where d0 = 0 and spooled =
√

s2
x1(n1−1)+s2

x2(n2−1)
n1+n2−2 =

√
(1.712)(5)+(1.912)(6)

6+7−2 =
√

3.32.

Under H0 T ∼ tn1+n2−2.
tobs = 54.25− 53.07√

3.32
√

1/6 + 1/7
= 1.164.

This is a two-sided test, and using significance level α = 0.05 we reject the null hypothesis when
|tobs| > tα/2,n1+n2−2. From the tables we find that the critical values are t0.025,11 = 2.201.
Conclusion: We can not reject the null hypothesis and we have reason to believe that the mean
heights of plants given the two types (X1 and X2) are not significantly different. If we look up
in the table in "Tabeller og formler" we find that the p-value is larger than 0.15.

b) When we assume that X1i and X2i are not normally distributed we can perform a non-
parametric test. When the normality assumption does not hold, a non-parametric alternative
to the t-test can often have better statistical power. For example, for two independent samples
when the data distributions are asymmetric (that is, the distributions are skewed) or the distri-
butions have large tails, then the Wilcoxon rank-sum test (also known as the Mann–Whitney
U test) can have three to four times higher power than the t-test.
If we cannot assume any underlying parametrical distributional, but continuous distribution
and equal shape of the distribution for the two populations, the we can perform a Wilcoxon
signed-rank test for the data. The Wilcoxon rank-sum test is used for two independent sam-
ples. The Wilcoxon rank-sum test is robust towards outliers since only ranks are considered.

We test the hypothesis that the median of the two samples are different.

H0 : µ̃1 = µ̃2 vs. H1 : µ̃1 6= µ̃2

or written as
H0 : µ̃1 − µ̃2 = 0 vs. H1 : µ̃1 − µ̃2 6= 0

The observations are arranged in ascending order: and ranked from 1 to 13, ranks marked *
belong to x1, the smallest sample:
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Ordered data Ranks
51.0 1.5
51.0 1.5
52.1 3.5
52.1 3.5*
52.9 5*
53.0 6
53.3 7
54.0 8.5*
54.0 8.5*
55.5 10
55.6 11
56.1 12*
56.4 13*

Since this is a two-sided test the test observator is the min(U1, U2), so we need to calculate
both U1 and U2. We calculate the sum of ranks for the smaller sample, x1 (as we have unequal
sample size), for fertilizer X1 are w1 = 3.5 + 5 + 8.5 + 8.5 + 12 + 13 = 50.5. We then need to
calculate u1 = w1 − n1(n1+1)

2 = 50.5− (6)(7)
2 = 29.5.

w2 = (n1+n2)(n1+n2+1)
2 −w1 = 91−50.5 = 40.5. Then u2 = w2− n2(n2+1)

2 = 40.5− (7)(8)
2 = 12.5.

The min(u1, u2)=u2 = 12.5.
We can find the p-value for the test in "Wilcoxons to-utvalgstest" in "Tabeller og formler". We
need to find P (U2 ≤ 12) = 0.117 and P (U2 ≤ 13) = 0.147, then P (U2 ≤ 12.5) = 0.132. This is
a two-sided test so we get a p-value of 2 · P (U2 ≤ 12.5) = 2 · 0.132 = 0.264.
Conclusion: We can not reject the null hypothesis. We have reason to believe that the mean
heights of plants given the two types (X1 and X2) are not significantly different.

If we assume normality U1 and U2 will have test statistics,
µ = n1n2

2 = 6 · 7/2 = 21 and σ = n1n2(n1+n2+1)
12 = 588/12 = 49. Two-sided test, use

min(u1, u2)=u2
The standard normal test statistics is

Z = U2 − µU2

σU2

= 12.5− 21√
49

= −1.214286

We reject H0 if ( Z < −1.960 or if Z > 1.960 or) |Z| > Zα/2 = 1.96.
Conclusion: We can not reject H0.
P-value is approximately 0.23.
For the non-parametric Wilcoxon signed-rank test for the data in a), this test has lower power
than the t-test when data is normally distributed. We see that the p-value is much larger in
the non-parametric test than in the t-test.
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Problem 2 Cement hydration

a) Write down the fitted regression model.

y = 62.41 + 1.5511x1 + 0.5102x2 + 0.1019x3 − 0.1441x4 (1)

Hypothesis for x3:

H0 : β3 = 0 vs. H1 : β3 6= 0

The p-value is found to be 0.896. Given that the truth is that β3 = 0 there is a 0.896 proba-
bility to observe a test statistic T which is at least as extreme (tobs ≤ −0.14 or tobs ≥ 0.14) as
what we have observed.

Is this a good model?

• Linearity: looking at the scatter plots and correlation we see a linear trend and correlation
in x2 vs. y, x4 vs. y, x4 vs. x2 and x3 vs. x1. In the plot of the standardized residuals vs.
fitted value we see no clear trend, and thus may assume that linearity in the parameters of
the model may be an adequate assumption. No clear trend in the standardized residuals
vs. fitted value plot also indicates equal variance of errors (homoscadasticity).
• Covariates included in the model: No covariate gave a p -value below 0.05 when testing
each of the covariates (x1 was almost significant, p-value of 0.071). All of the covariates
seems to have a high correlation with y (x3 has the lowest correlation with y). We may
try to refit the model without the x3 term, this will also change the estimated coefficients
for the other covariates. All of the covariates and response seems to be highly correlated
(not x3 and x4). In an overall level the regression is found to explain more than just the
average yield level ( p -value for the regression is 0.000).
• Normality of errors: looking at the qq-plot for the standardized residuals the assumption
of normality seems plausible.
• Explanatory powers: the model explains 98.2% of the variability of the data, which is a
high number.

Conclusion: the model seem to be adequate.

b) Model B only includes two covariates, while Model A has four. The estimated regression coef-
ficients for the variables that are present in both models, x1 and x2 are different for Model A
and Model B (because the covariates are correlated). The p-values for the coefficients in Model
B are smaller than those for Model A. Model A explained (R2

adj) 97.4% of the variability in
the data, and Model B explains also 97.4%.
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Formally: let SSR(modelA) be the regression sums of squares for model A and SSR(modelB)
be the regression sums of squares for model B. Further, SSE(modelA) is the error sums of
squares for the full model A. The difference in number of parameters between model A and B
is m = 2 and n−k−1 = 13−4−1 = 8 is the degrees of freedom for SSE(modelA). Under the
null hypothesis the test statistic F follows a Fisher distribution with m = 2 and n− k − 1 = 8
degrees of freedom.

F = SSR(modelA)− SSR(modelB)
m

/
SSE(modelA)
n− k − 1 = 2667.90− 2657.9

2 /
47.86

8 = 0.836.
(2)

The critical value in the Fisher distribution with m and (n-k-1) df is 4.46 at level 0.05 and the
null hypothesis can not be rejected. This implies that β3 and β4 are simultaneously zero. This
means that model B is preferred to model A.

Looking at the R2
adj also gives the same conclusion, as they are approximately the same.

c) • R2: defined as
SSR/SST = 1− SSE/SST,

and indicates the proportion of variation explained by the regression model. This can
only increase as more variables are added to the model. R2 should not be used comparing
models with different number of covariates (however, if adding more variables to the model
yields a very small increase in R2 this indicates that this is not worthwhile). R2 can be
used to compare models with the same number of parameters.
• R2

adjusted: defined as
1− SSE/(n− k − 1)/SST (n− 1),

and makes a penalty for adding more predictors to the model. The best regression model
is the one with the largest adjusted R2-value.
• S: is the square root of

MSE = SSE/DF

and quantifies how far away our predicted responses are from our observed responses. We
want this distance to be small and the best regression model is the one with the smallest
MSE. As S is the square root of MSE, the best model is also the one with the smallest S.
• Mallows Cp (from textbook):

Cp = p+ (s2 − σ̂2)(n− p)/σ̂2

where p=number of parameters estimated, n=number of observations, s2= estimated
variance (MSE) of model under investigation, σ̂2=estimated variance of the most complete
model (Model A). We are in general looking for a small value for Cp. A rule of thumb
is that we would like a model where Cp ≈ p A too high Cp may indicate a model that is
underfitted (not explaining variability), and a too low Cp may indicate a model that is
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overfitting the data. By default Cp = p for the model we use as the most complete model
(Model A).

Compare models: The model with the largest adjusted R2-value (97.6) and the smallest S
(2.3087) is the model with the three variables x1, x2, and x4, (whereas based on the R2 crite-
rion, the "best" model is with x1 and x2 R

2 = 97.9).

The V ars column tells us the number of predictors (p-1) that are in the model (because
intercept is in the model). But, we need to compare Cp to the number of parameters (p). We
should add one to the numbers in V ars to compare to Cp.
Looking first at Cp, these seems to be good models

• the model containing x1 and x2 contains 3 parameters, Cp value is 2.7. Cp indicats
overfitting.

• the model containing x1, x2 and x4 contains 4 parameters, Cp value is 3.0. Cp indicats
overfitting.

• the model containing x1, x2 and x3 contains 4 parameters, Cp value is 3.0. Cp indicats
overfitting.

(and the full modell, Cp=5, p=5, and is assumed to be a good fit, and should not use Cp to
evaluate model for the full model).
There are not much difference in these three models above when looking at Cp. Based on the
adjusted R2 and S I would recommend the model with the three variables x1, x2, and x4. (The
model with only x1 and x2 is also a good alternative). But, we also need to examine residual
plots and model fit for this model in order to conclude.

Problem 3 Pain and hair colour

a) In the ANOVA output the sums of squares (SS) of the total variability in the data is decomposed
into variability of pain score between hair colours types (SSA/"HairColour"), and variability
within hair color types (SSE/"Error", the residuals), SST=SSA+SSE. The sum of squares give
these decomposed numerical values. A degree of freedom (DF) is associated with each sum,
reflecting the amount of information in the sum (- and technically associating the scaled sum
with a χ2-distribution with this number of degrees of freedom). The Mean squares (MS) are
the Sum of squares (SS) divided by the degrees of freedom. The F-value is the ratio between
the MS for the hair colours types ("HairColour") and the MS for the ERROR/residuals. The
p-value related to the F-value and the F-distribution. The null hypotheses testes are wrt the
parameters means, µi (or αi) begin equal (or the same for the other parameters). S is the
estimate for σ, and is the

√
MSE

Missing entries:
DF Error: number of observations - number of groups = 19-4=15, or DF Total - DF Hair-
Colour.
SS HairColour: MS HairColour= SS HairColour /DF HairColour, that gives MS HairColour
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× DF HairColour =SS HairColour, 453.6× 3 = 1360.8
SS Error: SS Total - SS HairColour=2362.5-1360.8=1001.7.
MS Error: SS Error/DF Error = 1001.7/15=66.78.
F : MS HairColour/MS Error=453.6/66.78=6.792.
S: In the one-way ANOVA we assume a common variance for the pain in all groups. This
means that we may pool together the individual empirical variances to estimate a common
variance for all groups. The weighing factor is the number of observations minus one (for the
group mean) in each group. Here S2

i is the estimator for σ2 based on the ith group.

S2 =
∑k
i=1(ni − 1)S2

i∑k
i=1(ni − 1)

=
∑k
i=1(ni − 1)S2

i

n− k
= SSE

n− k
.

Numerically

S =
√

(5− 1) · 9.2842 + (5− 1) · 8.3252 + (5− 1) · 8.5262 + (4− 1) · 5.4472/
√

19− 4 = 8.172

or
S =

√
SSE/n− k =

√
MSE =

√
66.78 = 8.172

Assumptions :
The one-way ANOVA can be written as

Yij = µ+ αi + εij , (3)

where εij is i.i.d. N (0, σ2), that is the error terms are independent and normally distributed
with the same variance across treatment groups.

H0 : α1 = α2 = α3 = α4 = 0 vs. H1 : not all are equal

This can be tested using the F-statistics, if there are significantly variation between the hair
colour types than variation within the different types. F = 6.792 and we got a p-value for this
test at 0.004, which is lower than our significance level and we can reject the null hypothesis,
and we have reason to believe that the pain sensitivity is not the same for all hair colours.

b)
H0 : µLightBlonds − µDarkBrunette vs. H1 : not equal

t = ȳLightBlonds − ȳDarkBrunette
S

√
1

nLightBlonds
+ 1

nDarkBrunette

. (4)

t=(59.200− 37.400)/8.172
√

1/5 + 1/5= 4.217918

Degrees of freedom to S found in ANOVA table (Spooled) equals to (n-k) 15, for a two-sided
test the critical value is tα/2, 15=2.131.
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Conclusion: reject the null hypothesis. Light blonds are significantly different from Dark
brunette.

Compute the 95% confidence interval on µLightBlonds − µDarkBrunette as

yLightBlonds − yDarkBrunette ± tα/2s

√
1

nLightBlonds
+ 1
nDarkBrunette

,

where tα/2,15= 2.131 (df from S). Numerically

(59.200− 37.400)± 2.131 · 8.172
√

1
5 + 1

5 = 21.8± 11.01392 = (10.79, 32.81).

All values in the interval are considered plausible values for the parameter being estimated. If
the value of the parameter specified by the null hypothesis is contained in the 95% interval then
the null hypothesis cannot be rejected at the 0.05 level. We observe that the interval do not
cover zero, we can reject H0, the difference in pain between Light blonds and dark brunettes
is significant. Same result as with the t-test.

Problem 4 Satisfaction of custumers

a) Hypothesis:

H0 : column probabilities are the same for each row vs. H1 : not so

H0 : pSouth−west = pSouth−East = pMiddle = pNorthH1 : at least one differ

We will use a χ2-test for homogeneity, where the test statistics approximately follows a χ2-
distribution with (c − 1)(r − 1) degrees of freedom. Here c = 3 and r = 4, yielding 2 · 3 = 6
degrees of freedom.

Expected frequencies are calculated as (columns totals)·(row totals)/(grand total). The table
of observed and expected values (e) are as follows:

Region/Number of costumers that are: Satisfied Don’t know Discontent Total
South-west 235(224,70) 74(64,24) 89(109,06) 398
South-East 654 (658,29) 203 (188,21) 309 (319,50) 1166
Middle 366 (388,99) 79(111,22) 244 (188,80) 689
North 179 (162,03) 54 (46,33) 54(78,64) 287
Total 1434 410 696 2540
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Showing how the Satisfied and South-west cell expected value is calculated: 398×1434/2540 =
224.70.
The contribution from this cell to the test statistic is (235−224.70)2

224.70 = 0.472. The test statistic
consists of 12 terms, and is given as X2 = (235−224.70)2

224.70 + ...+ (54−78.64)2

78.64 = 44.780.
The null hypothesis is rejected if the test statistics is larger than χ2

0.05,6 = 12.592.
Conclusion: clearly we can reject the null hypothesis and we have reason to believe that the
proportions of degree of satisfaction of the chain-store customers differ between the regions
(South-west, South-East, Middle and North).


