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Problem 1 Treatments for stress reduction

a) Test the hypothesis
H0 : σA = σB vs. H1 : σA 6= σB

by calculating a 95% confidence interval for σA

σB
.

P (F1−α/2,9,9 < F < Fα/2,9,9) = 0.95

P (F0.975,9,9 <
σA
σB
· sB
sA

< F0.025,9,9) = 0.95

P (
√
F0.975,9,9 ·

sA
sB

<
σA
σB

<
√
F0.025,9,9 ·

sA
sB

) = 0.95

A 95% confidence interval for σA

σB
:

σA
σB
∈ [
√

0.2484 · 0.972
1.333 ,

√
4.0260 · 0.972

1.333 ] = [0.3434, 1.463]

We see that 1 lies within the confidence interval and we keep H0 : σA = σB .

Based on the data, can we conclude that the stress reduction scores are different for the two
treatment groups (group A and group B)?

We test the hypotheses:
H0 : µA = µB vs. H1 : µA 6= µB

Perform a two-sample t-test with equal sample size and variance (from the hypothesis test
above). With equal variance between the groups we can use the pooled estimate of the standard
deviation:

S2
p =(nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2

= (10− 1) · 0.9722 + (10− 1) · 1.3332

10 + 10− 2 = 1.36



TMA4255 Applied Statistics, 3 June 2016 Page 2 of 11

T = X̄A − X̄B

Sp

√
1
nA

+ 1
nB

Under H0 T ∼ tnA+nB−2. It is given that

tobs = 3.5− 3
√

1.36
√

1
10 + 1

10

= 0.958

This is a two-sided test, and using significance level α= 0.05 we reject the null hypothesis when
|tobs| > tα/2,nA+nB−2. From the tables we find that the critical value are t0.025,18 = 2.101.

Conclusion: We cannot reject the null hypothesis and we have reason to believe that the stress
reduction scores are the same for the two treatment groups A and B.

Assumptions for the two-sample t-test:
Each sample comes from a normally distributed population and independent samples. From
the hypothesis in the first part of this problem, we found that σA = σB , so assume equal
variance in the two samples.

b) We test the hypotheses:
H0 : µ̃A = µ̃B vs. H1 : µ̃A 6= µ̃B .

In the Wilcoxon rank-sum test we

• order the scores in increasing order without regard of which group they came from
• give them a rank
• sum the rank of the smallest group 1 (here choose group A)
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Group Order Rank
B 1 1.5
B 1 1.5
B 2 4
A 2 4
A 2 4
A 3 8
A 3 8
B 3 8
B 3 8
B 3 8
A 4 14.5
A 4 14.5
A 4 14.5
A 4 14.5
A 4 14.5
B 4 14.5
B 4 14.5
B 4 14.5
A 5 19.5
B 5 19.5

Sum the ranks of group A, WA =116.
From WA we can calculate WB = (nA+nB)(nA+nB+1)

2 −WA = (20)(21)
2 − 116 = 94. The test

statistics is then standardized,

UA = 116− 10(10 + 1)
2 = 61

UB = 94− 10(10 + 1)
2 = 39

This is a two-sided test and we take the min(UA, UB) (here = UB = 39). From the tables we
can find a critical value (here 23). We reject H0 if U ≤ critical value. We can also base the
test on the p value, it is found in Table 1 to be 0.4272.
Conclusion: we can not reject H0. This is the same conclusion as in a).

Assumptions:

• two continuous distributions, non-normal
• same shape and spread
• independent samples

We see from Figure 2 that the data are not normal (AD test gives p-value of 0.015), but very
close to being normal. Wilcoxon rank-sum test will give best power of the test if very non-
normal data. The t-test could give the best power, as it reasonably robust to departure from
normality.
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c) We test the hypotheses:

H0 : µA = µB = µC vs. H1 : at least two means are not equal.

To perform a one-way ANOVA we need to find the treatment sums of squares (SSA) and the
error sums of squares (SSE). Let x̄A denote the average and s2

A the standard deviation of
method A. Ditto for methods B and C. Let x̄ denote the grand mean.

SSA = nA(x̄A − x̄)2 + nB(x̄B − x̄)2 + nC(x̄C − x̄)2 =
10(3.5− 2.83)2 + 10(3− 2.83)2 + 10(2− 2.82)2 = 11.667

SSE = (nA − 1)s2
A + (nB − 1)s2

B + (nC − 1)s2
C =

9 · 0.9722 + 9 · 1.3332 + 9 · 0.8162 = 30.48776.

We have that nA = nB = nC = 10, k=3. The F statistic is found to be

F =
11.667
k−1

30.48776
k(n−1)

=
11.667

2
30.48776
3(10−1)

= 5.8335
1.129 =5.166962,

and should be compared with the critical value F0.05,2,27 = 3.3541, and we thus reject the null
hypothesis.
Assumptions:
The one-way ANOVA model is:

Yi,j = µ+ αi + εi,j ,

where the error terms are independent and normally distributed with the same variance across
treatment groups.
Conclusion: at least two of the group means differ. To find out which of the groups differ, we
need multiple testing.

d) Bonferroni:
µi − µj is significant different from 0 if

|ȳi. − ȳj.| ≥ tα/2·m,N−k · Sp

√
1
ni

+ 1
nj
.

m=3 (number of tests), N=30, k=3, Sp =
√
SSE/N − k. The critical value tα/2·m,N−k =

t0.025·3,27 = t0.0083,27, we can not find this exact value in the tables, we find t0.005,27 = 3.690.
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For group A and B, test if

H0 : µA − µB = 0 vs. H1 : µA − µB 6= 0

|ȳA − ȳB | ≥ 3.69 ·
√

1.129
√

1
10 + 1

10 .

|3.5− 3| ≥ 1.75

Conclusion: not significant different from 0, and group A and group B have equal means.

For group A and C, test if

H0 : µA − µC = 0 vs. H1 : µA − µC 6= 0

|ȳA − ȳC | ≥ 3.69 ·
√

1.129
√

1
10 + 1

10 .

|3.5− 2.0| ≥ 1.75

Conclusion: not significant different from 0, and group A and group C have equal means.

For group B and C, test if

H0 : µB − µC = 0 vs. H1 : µB − µC 6= 0

|ȳB − ȳC | ≥ 3.69 ·
√

1.129
√

1
10 + 1

10 .

|3.0− 2.0| ≥ 1.75

Conclusion: not significant different from 0, and group B and group C have equal means.

Problem 2 Heat flux

a) Estimated regression equation

ŷ = 325.44 + 0.06753x1 + 2.552x2 + 3.800x3 − 22.949x4 + 2.417x5.

Is x5 significant?
(Estimated regression coefficient for x5 is 2.417).

H0 : β5 = 0 vs. H1 : β5 6= 0

using a t-test. The t statistics is 1.24 with n-k-1 degrees of freedom, df=23. Critical value
t0.025,23 = 2.069.
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Conclusion: we accept H0, and x5, the time of day, is not significant (p-value 0.194).

Calculate the R2 and explain how you can interpret this value.

R2 is defined and calculated as

SSR

SST
= MSR · k

SST
= 2639.1 · 5

14681.9 = 89.9%.

R2 can be interpreted as the proportion of variability in the data that is explained by the
regression model, Model A.

An appropriate estimate for σ is the estimated standard deviation in the regression model,
s =

√
SSE
n−k−1 =

√
MSE =

√
64.6 = 8.037413.

Is a significant amount of variation explained by the model?

H0 : β1 = β2 = β3 = β4 = β5 = 0 vs. H1 : at least one not equal to 0

To test this we use the F statistic

F =
SSR
k

SSE
n−k−1

= 40.81,

we see from Figure 5 that a p-value approximately 0 is given for this F-test.

Conclusion: Model A explain a significant amount of variation.

b) There are four principal assumptions made in the linear regression model in Eqn. 1.

1. Linearity of the relationship between response and covariates.
2. Independence of the errors, εi (no serial correlation).
3. Homoscedasticity (constant variance) of the errors, εi. This means constant variance

versus time and versus fitted value (or covariates).
4. Normality of the error,εi, distribution.

That is εi ∼ N(0, σ2) iid. We can not observe this random error term, and we therefore use
the residuals (standardized) to test the assumptions from the fitted regression.

A residual is defined as ei = yi − ŷi, where ŷi is the estimated fitted values.
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1. Detecting nonlinearity is usually most evident in a plot of the residuals versus fitted values.
If linear, the points should be symmetrically distributed around a horizontal line. A curve-
like pattern may indicate that the model makes systematic errors making unusually large
or small predictions. Also residuals versus covariates can indicate nonlinearity. In Figure
6 upper right panel we see that there are no clear pattern, but not entirely random with
some large values for small values of y. We have to look further at plots of residuals vs
covariate to determine further the linearity of the residuals (not included in the problem).
We also see from Figure 4 that we have a high correlation between y and x1, x4, x5 (and
also between some of the covariates).

2. By looking at the standardized residuals versus observation order we can detect correlation
in the residuals. If there are no correlation, the residuals should be scattered randomly
around 0, and there should be no trend. In Figure 6 lower right panel we see that there
are no clear trend, although not entirely random.

3. Non constant variance can be detected by looking at for instance standardized residuals
versus fitted values. Non constant variance is indicated by a trend, most often a "fan"
shape. Also residuals versus covariates can indicate non constant variance. In Figure 6
upper right panel we see that there are no clear pattern, however maybe an indication of
a "fan" shape, where the residual are larger for larger values of the fitted values.

4. A normal probability plot of the residuals (QQ-plot) is the best test for normally dis-
tributed errors. If the error distribution are normal the residual points should fall close
to the diagonal line. An S-shaped pattern of deviations from the diagonal line indicates
too many/too few large errors and a bow-shaped pattern indicates that the residuals are
not symmetrically distributed (see also histogram of residuals). Violations of normality
can be due to two reasons that the distributions of the response and/or covariates are sig-
nificantly non-normal, and/or the linearity assumption is violated. A Anderson-Darling
normality test can also be used to test for normality. In Figure 6 upper left panel we
see that all of the points lies inside the 95% confidence interval (one point on the line),
and we have a normal distribution. Although the points have a indication of a S-shaped
curve. A p-value of > 0.05 of the Anderson Darling test, indicates that the residuals are
normally distributed. Also the histogram lower left panel indicates a somewhat normal
distribution of the residuals.

c) • R2: defined as
SSR/SST = 1− SSE/SST,

and indicates the proportion of variation explained by the regression model. This can
only increase as more variables are added to the model. R2 should not be used comparing
models with different number of covariates (however, if adding more variables to the model
yields a very small increase in R2 this indicates that this is not worthwhile). R2 can be
used to compare models with the same number of parameters.

• R2
adjusted: defined as

1− SSE/(n− k − 1)/SST (n− 1),

and makes a penalty for adding more predictors to the model. The best regression model
is the one with the largest adjusted R2-value.
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• R2
pred: defined as

1− PRESS

SST
= 1−

∑
yi − ŷi,−i
SST

, reflecting prediction performance. The best regression model is the one with the largest
predicted R2-value.
• S: is the square root of

MSE = SSE/DF

and quantifies how far away our predicted responses are from our observed responses. We
want this distance to be small and the best regression model is the one with the smallest
MSE. As S is the square root of MSE, the best model is also the one with the smallest S.
• Mallows Cp (from textbook):

Cp = p+ (s2 − σ̂2)(n− p)/σ̂2

where p=number of parameters estimated, n=number of observations, s2= estimated
variance (MSE) of model under investigation, σ̂2=estimated variance of the most complete
model (Model A). We are in general looking for a small value for Cp. A rule of thumb
is that we would like a model where Cp ≈ p A too high Cp may indicate a model that is
underfitted (not explaining variability), and a too low Cp may indicate a model that is
overfitting the data. By default Cp = p for the model we use as the most complete model
(Model A).

Compare models: The model with the largest adjusted R2-value (97.6) and the smallest S
(2.3087) is the model with the three variables x1, x2, and x4, (whereas based on the R2 crite-
rion, the "best" model is with x1 and x2 R

2 = 97.9).

The V ars column tells us the number of predictors (p-1) that are in the model (because
intercept is in the model). But, we need to compare Cp to the number of parameters (p). We
should add one to the numbers in V ars to compare to Cp.

• Full model: has the highest adjusted R2 (87.7%), a low Mallows’ Cp value (6.0), and the
lowest S value (8.0390) (should not use Cp to evaluate model for the full model).
• Best model with p=4 variables: the model containing x1, x2,x3 and x4 contains 5 param-
eters, has a lower Cp value (5.8), although S is slightly higher (8.16) and adjusted R2 is
slightly lower (87.3%).

• Best model with p=3 variables: the model containing x2,x3 and x4 contains 4 parameters,
has a slightly higher Cp value (7.6) and a lower adjusted R2 (85.9%).

• Best model with p=2 variables: the model containing x3 and x4 contains 3 parameters,
Cp=9.1, lower R2

adjusted (84.8%).

• One predictor model have very high Cp and low R2
adjusted.

In this example, it isn’t obvious which model fits the data best. The best two predictor model
includes x3 and x4 and is tied for having the highest predicted R2 (81.4%). This fact suggests
that the models that include additional predictors may be overfitting the data. Overfit models
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appear to explain the relationship between the predictor and response variables for the data
set used for model calculation but fail to provide valid predictions for new observations. If you
are mainly interested in predictions for new observations, this two predictor model may be the
best model and you will only need to measure data for two predictors.

Problem 3 Time to tie show laces

a) We use the χ2 goodness of fit test, bases on calculated frequencies using the distribution under
the null hypothesis Hypothesis:

H0 : the total time to tie shoe laces is normally distributed with mean 35 and standard deviation 10

vs. H1 : not so

We need to calculate the expected frequency for each time interval, which again is based on
calculating the probability for each time interval under the null hypothesis. Define:

• pi expected probability for class i
• oi observed count in class i
• ei expected count in class i

Let X ∼ N(35, 10).

P (X ≤ 10) = P (Z ≤ 10− 35
10 ) = Φ(−2.5) = 0.0062

P (X ≤ 20) = P (Z ≤ 20− 35
10 ) = Φ(−1.5) = 0.0668

P(X ≤ 30)= P(Z ≤ 30− 35
10 ) = Φ(−0.5) = 0.3085

P(X ≤ 40)= P(Z ≤ 40− 35
10 ) = Φ(0.5) = 0.6915

P (X ≤ 50) = P (Z ≤ 50− 35
10 ) = Φ(1.5) = 0.9332

P (X ≤ 60) = P (Z ≤ 60− 35
10 ) = Φ(2.5) = 0.9938
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p1 = P (X ≤ 10) = 0.0062
p2 = P (X ≤ 20)− P (X ≤ 10) = 0.0606
p3 = P (X ≤ 30)− P (X ≤ 20) = 0.2417
p4= P(X ≤ 40)−P(X ≤ 30) = 0.3829
p5 = P (X ≤ 50)− P (X ≤ 40) = 0.2417
p6 = P (X ≤ 60)− P (X ≤ 50) = 0.0606
p7 = P (X ≥≥ 60) = 0.0062

The probability, that the total time to tie shoe laces for a random child, lies in the interval
(30, 40] is found in bold.

The expected value for each time interval is found as ei = n · pi with n = 250. Table of
probabilities, expected and observed frequencies.

1 2 3 4 5 6 7
Time (∞,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,∞]

Probability under null 0.0062 0.0606 0.2417 0.3829 0.2417 0.0606 0.0062
Expected 1.55 15.15 60.43 95.73 60.43 15.15 1.55
Observed 9 16 51 72 79 11 12

The expected is lower than 5 for cell 1 and 7. Need to merge four of the cells to be make the
approximation valid a χ2 distribution.

1 2 3 4 5
Time (∞,20] (20,30] (30,40] (40,50] (50∞]

Probability under null 0.0668 0.2417 0.3829 0.2417 0.0668
Expected 16.7 60.43 95.73 60.43 16.7
Observed 25 51 72 79 23

The test statistics is

x2 =
k∑
i=1

(oi − ei)2

ei

approximately χ2 distributed with k-1=5-1= 4 degrees of freedom.

X2 =
5∑
i=1

(25− 16.7)2

16.7 +(51− 60.43)2

60.43 +(72− 95.73)2

95.73 +(79− 60.43)2

60.43 +(23− 16.7)2

16.7 = 4.12515+1.471536+5.882303+5.706518+2.376647 = 19.56.

.
The null hypothesis is rejected if the test statistics is larger than χ2

0.05,4 = 9.488.
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Conclusion: clearly we can reject the null hypothesis and we have reason to believe that the
total time to tie shoe laces is not normally distributed with mean 35 and standard deviation 10.

How could you instead test the null hypothesis that the total time to tie shoe laces is normally
distributed, N(µ, σ), when µ and σ are unspecified?

We could instead test the hypothesis:

H0 : the total time to tie show laces is normally distributedH1 : not so.

Using the estimated mean and standard deviation of the data as estimate of µ and σ and
perform the same procedure as above.


