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The note is adapted from the note
Tyssedal: “To-niva faktorielle forsgk og blokkdeling”.

Example

The connection between yield of a chemical process and the two factors temper-
ature and concentration is to be investigated. Four experiments are conducted,
where two values of each factor are used. This gives 4 possible level combina-
tions of the two factors to investigate the yield. The experiment is given in the
table below, where the observed responses (yield) are also given:

Experiment no. Temperature Concentration Yield

1 160 20 60
2 180 20 72
3 160 40 54
4 180 40 68
T 1) Y

The appropriate linear regression model is

y = Bo + Bix1 + Powe + Praxixo + €,

where the product term x x5 is included in order to model a possible interaction
between the two factors temperature and concentration.

The design matrix X of this model is obviously:

1 160 20 3200
Y 1 180 20 3600
1 160 40 6400
1 180 40 7200

MINITAB fits the following model:
Regression Analysis: y versus x1; x2; x1x2

The regression equation is

y =- 14,0 + 0,500 x1 - 1,10 x2 + 0,00500 x1x2
Predictor Coef

Constant -14,0000

x1 0,500000

x2 -1,10000

x1x2 0,00500000



Let us now recode the factors by introducing new independent variables

P 170
T
5 . Tro — 30
7 10
212 = 21022
The regression model is now
y = Bo+ Brz1 + Baza + Bi2z12 + € (1)
with design matrix
1 -1 -1 1
1 1 -1 -1
X = 1 -1 1 -1 (2)
1 1 1 1

and MINITAB finds the following model:

Regression Analysis: y versus zl; z2; z12

The regression equation is
y = 63,5 + 6,50 z1 - 2,50 z2 + 0,500 z12

Predictor Coef
Constant 63,5000
z1 6,50000
z2 -2,50000
z12 0,500000

To see that we have the same fitted model, we can substitute the expressions
for z1, 29, 212 in terms of the x1, x2, to get:

N x1 — 170 xo — 30 xr1 — 170 29 — 30
= . . -7—2. . . .
7 63.5 4+ 6.5 10 5 10 + 0.5 0 0

= —14+40.5z1 — 1.129 + 0.005z1 22

Design of Experiments (DOE) terminology

In the example we consider two factors, A=temperature, B=concentration, and
the response y=yield.

Each factor has two levels:

Factor low high
A 160° (-1) | 180° (+1)
B 20% (-1) | 40% (+1)

We have thus 2 factors which each can be on 2 levels, making 22 = 4 possible
combinations. The following is standard notation of such an experiment, a so
called 22 experiment:



A | B | AB | Level code | Response
q1] 1 1 n
1] -1 -1 a Y2
1) 1) -1 b Y3
171 1 ab Y4
21 | 22 | 212

The level code shows the factor(s) at high level for the corresponding level
combination.

Multivariate regression with orthogonal design matrix X
(Chapter 12.7 in book)

Consider the vector/matrix setup y = X3 + €, or written out,

Yy 1z @1 - g Bo €1
Ys 1 x12 ®22 -+ T2 B1 €
= . +
Y, 1 =z xon - Tgp /Bk €n

We say that X has orthogonal columns if the product-sum of any two columns
is 0. This means here that:

> wjwy =0when j £ (j,0=1,...,k)
=1

Z:cei:0for£:1,...,k
i=1

(where the last equality follows since the first column has only 1s).

A remarkable fact about the estimated regression coefficients in the above model
is that each b; is computed from the column corresponding to x; only (in
addition to the y;), and that the estimated coefficients hence do not change
when we look at submodels (i.e. take out variables from the model). The
formulas are:

bo = ¥
b] — ZLjoinyif()rj:1,27...,]€' (3)

n
i=1Tj;

from which we get in particular

o2
Var(bj) = 57— (prove it!)
i=1Tj;
We also have:
SSR=01Y al;+b3> ad+--+bp Yz}, (4)
i=1 i=1 i=1



so that

n

SSE=SST —SSR=Y (yi —9)* — 03> %, — - — 02 Y a;
i=1 =1

i=1

We see that the columns of X in (2) are orthogonal (check!) This simplifies the
estimation of the regression coefficients. Here we can use the formulas above.
Note that all the z;; are now equal to £1, so > ;" a:jzl = n(= 4), and the
numerators are all of the form > 7" ; +y; where + or — are determined from the
corresponding colums. Such expressions are called contrasts.

We get, using the formula in (3):

Y1+ Y2 +ys+ya

by = . = 63.5
b, — _Y1tY2TYsTYs  YatYs Y1tYs o
! 4 4 4 '

b, — _YLTY2tYstys  Ystys ity oo
2 4 4 4 '
YIi—Y2—Ys+Ys  Ys—Ys Y2—UY1
b — = — frd .
12 1 1 1 0.5

These estimators can be given an interpretation using Design of Experiments
(DOE) terminology:

First, by is named mean response.

Note that when factor A goes from low level (-1) to high level (+1), the mean
response of y increases by 231 (see the regression model (1)). This is interpreted
as the main effect of A. Therefore, the estimate 2b; will be interpreted as the
estimated main effect of A, denoted A. The following gives a nice and intuitive
interpretation of fl, where the last line is used as a general definition of the
main effect of a factor in DOE.

A = 2h
Y2t+ys Y1 +ys
N 2 2
= mean response when A is high — mean response when A is low

Similarly, the estimated effect of B is:

B = 2b
Ys+tYs Y1+ Yo
2 2
= mean response when B is high — mean response when B is low

Now what is the DOE interpretation corresponding to bi1s? The answer is that
2b19 is denoted AB and called the interaction effect between A and B. We have
the following motivation for this, where the last line is the general definition of
a two-factor interaction:

—

AB = 2b
Ya—Ys Y2~ U1
2 2




estimated main effect of A when B is high

2
estimated main effect of A when B is low

2

Note that we also have the symmetric interpretation:

—

AB = 2bis
Ya— Y2 Y3 — W1

2 2
estimated main effect of B when A is high

2
estimated main effect of B when A is low

2

From this we compute:

72+68  60+54

A = 1

2 2 3

5o D4+68 60472
2 2

i . 68-54 7260
2 2

Figure 1 illustrates the estimates.

Three factors

A | B| C| AB | AC | BC | ABC | Level code | Response
N R R E [ [ 1 60

+ | - - - - + + a 72
-+ -] - + - + b 54

+ 4+ -]+ -] - - ab 68
o I I c 52

+1 -+ - + - - ac 83
N be 45

]+ ] abc 80

21 | Z2 | 23 | 212 | 213 | %23 | %123

The corresponding regression model is:

y = Bo + B1z1 + Paze + B3z3 + Pi2zi12 + Pisz1z + Paszzas + Piaszies + €

where z190 = 2120, 213 = 2123, 223 = 2223, 2123 = 212223 and the design matrix
is given by putting —1 instead of —, +1 instead of 4+ and adding a column of

1s to the left in the table above.

Estimated effects using the above data are given on slides from the lectures.
While the main effects A, B are straightforward to compute, we now have, for

example,

AB = 2byy
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Figure 1: Graphical representation of estimated main effects and interaction in

22 experiment




estimated main effect of A when B is high

2
estimated main effect of A when B is low
2
68480 45454 83472 _ 52+60
_ 2 2 32 2
2 2

= 1.5

A brand new concept is the estimated third order interaction between A, B and
C. This is defined and interpreted as follows:

ABC = 2bios
_ estimated interaction between A and B when C is high
N 2
estimated interaction between A and B when C is low
2

You should check yourself that this is the same as computing 2b123 by using
the + and - in the column of ABC in the given table. Also check that we may
write “A and C when B is high/low” or “B and C when A is high/low” and get
the same result for ABC.

General full factorial experiment

In general there are k factors, usually named A,B,C,D,E,... which each can be
at two levels. The regression model can be written

y = Po+ Bix1 + Pexe + - + Prxg

+  Braxiz + Bizziz + -+ Br—1 kTh—1k3
+  Br23wi23 + -+ Br—2k—1,kTh—2k—1,k
+

+  B123..kT123k

+ €

Here 1 corresponds to A, 2 corresponds to B, 12 corresponds to AB, etc. There
k k
are k main effects (single indices), ( 9 > two-factor interactions, < 3 ) third

order interactions, etc. Hence there are altogether (including Sp)

(3)+(2)+(3) (1)

coefficients in the model. It can be shown that the design matrix is, for any k,
orhtogonal. Thus we have the simple estimates of the coefficients given by

o1 Tili i1 TYi

2
PO i n

so that the corresponding effect is given by

b =

?:1 +y;

n

2

Effect; = 2b; =



where the 4+ and — in front of the y; are determined from the corresponding
column in the factor table, and n = 2 is the number of observations. Here
and later we will use Eﬁ;ctj to denote a generic estimated effect, which in
practice can be any of 121, AB , ABC etc. The index j may also correspond to
interactions, for example j = (123) for interaction between A,B and C. It will
also sometimes be convenient to define Effect; without hat to mean simply 2;
(for main effects or interactions).

It follows, since the y all have the same variance o2, that for any estimated
effect:

— ™ty no? 42
1 _ 2
Var(Eﬁectj) = Var(=* % l) =z = = T froct
4

The quantity 02, has here been introduced for convenience. We will use it
interchangeably with o2. The two should not be confused.

Estimation of o2

In multiple regression we used

9 SSE
§f = —
n—r—1
where 7 is the number of independent variables. In a full factorial 2¥ experiment
we have = 2¥ — 1 while n is 2¥. This means that n —r —1 = 0, and the above
s? therefore has no meaning. The reason is that we estimate 2¥ parameters
(including By) while we have the same number of observations. This turns out
to be too few observations to estimate o?. For intuition, this is similar to the
fact that we cannot estimate o2 in the one-sample case if we have just one
observation. (We can, however, estimate p in this case. How?) We therefore
need an alternative method for estimating .

For a full factorial experiment, MINITAB uses the so called Lenth’s method (see
Appendix of this note - the theory is not in the required syllabus of TMA4255).
This method is based on an assumption that not all effects are non-zero, but
one needs not specify which effects one suspects are zero.

In some cases a 2¥ experiment is conducted with replicates, leading to two or
more independent observations for each combination of low /high for the factors.
In a case with r replicates of the experiment, we will have n = r - 2¥, so SSE
will have r - 2% — 2% = (r — 1) - 2F degrees of freedom. In this case the usual s
from regression can be used.

Without replicates, we can either use Lenth’s method mentioned above, and
being the default in MINITAB, or use the following method:

Estimation of 02 by assuming specified higher order interactions
are 0

We have in general

Eﬁct] ~ N(Eﬁ60t]7 U?ﬁect)



This follows directly from b; ~ N(8;,02%/n) since Eﬁ;ctj = 2b;.

It is sometimes reasonable to assume that higher order effects are 0, i.e. that
the theoretical Effect; = 0 when j represents such interactions, for example the
interaction ABCD. In these cases we have

Eﬁgctj ~ N(0,02..,)

effect
and hence .
E(Effectj) = azfmt

— 2
Thus Effect; is an unbiased estimator of 02 if B; = 0.

— 2
If several effects are assumed to be 0, we use the average of the Effect; to

estimate o2, ,. In the example with four factors, if third and fourth order

interactions are assumed to be 0, we get:
o _ABC"+ ABD" + ACD’ + BCD' + ABCD’ -
effect — 5

Example: Consider the setup and data in Figure 2. The effects (and coeffi-
cients) are estimated in the following output from MINITAB:

Factorial Fit: Y versus A; B; C; D

Estimated Effects and Coefficients for Y (coded units)

Term Effect Coef
Constant 72,250
A -8,000 -4,000
B 24,000 12,000
C -2,250 -1,125
D -5,500 -2,750
AxB 1,000 0,500
AxC 0,750 0,375
Ax*D -0,000 -0,000
BxC -1,250 -0,625
B*D 4,500 2,250
CxD -0,250 -0,125
AxBx*C -0,750 -0,375
A*B*D 0,500 0,250
A*xC*xD -0,250 -0,125
B*C*D -0,750 -0,375

AxBxCxD  -0,2560 -0,125

2

If we assume third and fourth order interactions are 0, we can estimate o7,

by (5), and get

, (=0.75)* +0.5% + (=0.25)* + (=0.75)* + (=0.25)* _ ', (6)

S effect 5

9
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Figure 2: MINITAB worksheet for a 2% experiment
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S0 8.5t = V0.3 = 0.55. Note that Lenth’s PSE (see slides) is 1.125 and hence
seems to overestimate o ... It is in fact well known that Lenth’s PSE is usually
conservative.

Alternatively, we can use the ANOVA table from this experiment to compute
the estimates s and s.g..;-

Analysis of Variance for Y (coded units)

Source DF Seq SS Adj SS AdjMS F P
Main Effects 4 2701,25 2701,256 675,313 * %
2-Way Interactions 6 93,75 93,75 15,625 * «x
3-Way Interactions 4 5,75 5,75 1,438 * %
4-Way Interactions 1 0,25 0,25 0,250 * %
Residual Error 0 * * *

Total 15 2801,00

From the earlier formula (4),
n n n
SSR=1b1> ai;+b3> x5+ + b > ai;,
1=1 i=1 =1

we can see that each estimated effect contributes to the SSR by the amount
i 2
2 2 2 T
i=1

Further, from

SSE=SST —SSR=> (yi —9)* - b1 at, — - =02 > ai,
=1 =1

=1

we can see that each time a (3; is assumed to be 0, the term b? it x?l is moved

from SSR to SSE. Thus, looking at the ANOVA table above, by assuming third
and fourth order interactions are 0, we obtain

SSE =5.754+0.25=06

with 441 = 5 degrees of freedom. The estimate for o2 is hence s?> = SSE/df =
6/5 = 1.2, which implies since n = 16,
szﬁect = (4/n)s*> = s°/4=1.2/3=0.3

which we already have found in (6) using a slightly different (but equivalent)
argument.

Statistical inference in full factorial experiments

We want to find which main effects or interactions which are significantly dif-
ferent from 0. This is of course equivalent to finding which coefficients 3; in

11



the corresponding regression model which are different from 0, since we have
Effect; = 2j3;. More precisely we want to test hypotheses of the form

Hy : Effect; = 0 vs Effect; # 0

or equivalently
H():Bj:OVSBj#O

The standard test statistic is, if o, and hence 4., is known:

b; b;
Z;=—2— =L ~ N(0,1) under H,
j SE®;) %2 (0,1) under Hy
or equivalently

= __ ~ N(0,1) under Hy
SE(EﬁSCt]) O-eﬁect

We reject Hy and say that Effect; is significant if
— 20
| Effect ;| > 2020 cpeet = 202 - 7n
If o and hence o4, are estimated by s and s.g..., respectively, then we reject

Hy and say that Effect; is significant if

- 2s
|Eﬁ€ct]‘ > ta/2,yseﬁect = ta/27y : ﬁ (7)

where v is the number of degrees of freedom connected to the estimates of o
and o .. that are used. When Lenth’s PSE is used, the degrees of freedom is

2k _1
3

df =

where 2% —1 is the number of effects in the model, while the 3 in the denominator
has been found empirically by Lenth.

Graphics in MINITAB

It is the right hand side of (7) which is used in MINITAB’s Pareto plots, where
the ]EE”th j\ are graphed in decreasing order of magnitude and the critical value
is indicated.

The normal plot in MINITAB is constructed in the same manner as the normal
plot that was considered earlier in the course. The straight line corresponds to
the distribution N (0, s?,,,). Thus, effects that are not significant are supposed

to fall close to the line, while significant effects will fall outside the line (positve
effects to the right, negative effects to the left).

MINITAB also provides cube plots like the one depicted in Figure 3 for the
Three factors data.

12
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Figure 3: Cube plot of data in the table for Three factors

Blocking in 2% experiments

The individual experiments of a 2¥ experiment should always be done in ran-
domized order. (MINITAB does this randomization for us). Randomization is
our best guarantee for independent observations, and implies less chances that
external factors influence the response, which may lead to wrong conclusions.
It is also important to check and adjust all level combinations between each
individual experiment. This is to assure as much as possible equal variances.

If many experiments are to be performed it may still happen that external
conditions vary from beginning to end of the total experiment. Such changes of
conditions may affect responses and hence again lead to wrong conclusions. To
avoid such effects we may perform the experiment in blocks. Sometimes there
are also other concerns, for example shortage of raw material, that forces one
to block divide an experiment. When an experiment is divided into blocks, we
should randomize within the blocks.

Example: 2° experiment in two blocks

The idea is to use the column for ABC to define the blocks. Block I corresponds
to the combinations with — in ABC, while Block II has + in this column. Thus
we get:

13
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St. order BC | Block | ABC

++
+

+

+

+

++

+1-1-1-1- +
|+ -] -+ - | I +
- - +

+

+ | - | - | 1
+ |+ |+ | 1

0 U W N D
1
+

- -

+ |+

We observe that if an amount h is added to the responses of all single exper-
iments in Block II, while nothing is added to the responses of Block I, then
computation of main effects and two factor interactions is not affected. This is
not the case for the three-factor interaction, however, which will be so-called
confounded with the block effect.

Example: 2° experiment in four blocks

We will now need two columns of the full experiment to define the four blocks.
Suppose we use the two-factor interactions AB and BC to define the blocks.
The blocks are determined as follows:

Block I AB has —, BC has —

Block II AB has —, BC has +
Block IIT AB has +, BC has —
Block IV AB has +, BC has +

This gives:

St. order | A| B| C| AB | AC | BC | Block | ABC
3| - |+ - - + - I +
6|+ -|+]| - | + ] - I -
204+ -1 - - - + 1I +
T -+ |+ - - + 1I -
414+ 14+] -] + - - 111 -

51 - | - |+ | + - - 111 +
1 -1 -7-7T+1+1T+] v -
8l+ |+ |+l + 1+ |+ v | +

It is clear that the interactions AB, BC, AC are all confounded with the block
effect (and can therefore not be estimated). The three main effects, may how-
ever be estimated.

How can we decide which columns to use for blocking?

We will always try to block in such a manner that we may estimate main
effects and possibly low-order interactions. Let I be a column of only +. (Do
not confuse it with the roman number I used in the tables above). Then

I1=AA=BB=CC

where columns are multiplied elementwise (++ is +, +- is - etc.)

14



Assume that a 23 experiment is block divided following the columns D = ABC
and £ = AC. The interaction between D and E is DE = ABCAC =
AABCC = B. It follows that the main effect of B is confounded with the
block effect, in addition to ABC and BC. It is therefore better to divide ac-
cording to AB and BC as we did above. This is because then the interaction
between AB and BC is AC (which is not a main effect!)

Appendix

Estimation of 0., by Lenth’s method:
The Pseudo Standard Error

Let C1,Cy, ..., C,, be estimated effects, e.g. fl, B’, Zl\?, etc.

1. Order absolute values |C}| in increasing order.
2. Find the median of the |C}| and compute preliminary estimate
sp = 1.5 - median;|C}|

3. Take out the effects C; with |C;| > 2.5-s¢ and find the median of the rest
of the |C}|. Then PSE is this median multiplied by 1.5, i.e.

PSE = 1.5 - median{|C}| : |C}| < 2.5s0}
and this is Lenth’s estimate of o ...

4. Lenth has suggested empirically that the degrees of freedom to be used
with PSE is m/3 where m is the initial number of effects in the algorithm.
Thus we claim as significant the effects for which |Cj[ > t, /9 ,/3 - PSE.

Example with Three factors

There are m = 7 estimated effects.

1. Ordered estimated absolute effects:
0,0.5,1.5,1.5,5,10,23
2. Median is 1.5 so s = 1.5 - 1.5 = 2.25.
3. Throw out large effects, i.e. the ones that are
>25-2.25 =5.625
leaving us with 0,0.5,1.5,1.5,5 for which median is still 1.5, so
PSE=15-15=2.25

4. Lenth’s degrees of freedom is m/3 = 7/3 = 2.33, so we claim effects to be
significant at 5% level when

|CJ| > 10.025,2.33 2.25 = 3.765 - 2.25 = 8.47.
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Some theoretical considerations

e The basic underlying idea is that many of the true effects are zero, and
that (most of) the ones that are not zero are thrown out in the last step
of the algorithm.

e The reason for 1.5 is that if C' ~ N(0,0%,,,) then the median of the
distribution of |C| is 0.6750 ..., so that the median of the distribution of
1.5-|C| is

1.5-0.6750 gt = O oppect-
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