Chapter 10

• Goodness-of-fit test. k cells, e_i are expected frequencies, o_i are observed frequencies, i = 1, ..., k. The test statistic

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}.$$

The critical region: $\chi^2 \ge \chi^2_{\alpha,k-1}$.

• Test for independence (categorical data: $r \times c$ contingency table). The test statistic

$$\chi^2 = \sum_{i=1}^{c} \sum_{i=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}.$$

The critical region: $\chi^2 \ge \chi^2_{\alpha,(r-1)(c-1)}$. The same test statistic and critical region are used for testing homogeneity.

Chapter 11

• Simple linear regression

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

x is regressor (predictor, independent variable, explanatory variable), Y is response (dependent variable), ϵ is error (random variable), $E\epsilon = 0$; β_0 (intercept) and β_1 (slope) are parameters of interest.

• Data: $(x_1, Y_1), (x_2, Y_2), ..., (x_n, Y_n),$

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_1, \epsilon_2, ..., \epsilon_n$ are independent normally distributed, $E\epsilon_i = 0$, $Var(\epsilon_i) = \sigma^2$. If $\hat{\beta}_0$ and $\hat{\beta}_1$ are some estimators of β_0 and β_1 , then

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

are fitted values, and the differences

$$e_i = Y_i - \hat{Y}_i$$

are residuals.

A visual analysis of the residuals gives useful preliminary information about data and model. On the basis of this analysis, the model can be corrected.

• Least squares estimators: minimization of

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2.$$

The estimators are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) Y_i}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}.$$

• Properties of the estimators. $\hat{\beta}_1$ and $\hat{\beta}_0$ are normally distributed.

$$E\hat{\beta}_{1} = \beta_{1}, \ E\hat{\beta}_{0} = \beta_{0},$$

$$Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

$$Var(\hat{\beta}_{0}) = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sigma^{2}.$$