Chapter 10

• *P*-value is the minimal level of significance such that H_0 is rejected for the observed data.

• One sample $X_1, X_2, ..., X_n$, $EX_i = \mu$, $Var(X_i) = \sigma^2$. Testing $H_0 : \mu = \mu_0$. Alternatives a) $H_1 : \mu > \mu_0$, b) $H_1 : \mu < \mu_0$, c) $H_1 : \mu \neq \mu_0$. The level of significance α.

1) X-s are normally distributed (or n > 30), σ^2 is known. The test statistic

$$Z = \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma}.$$

Z has the standard normal distribution under H_0 (exactly or approximately). The critical region: a) $Z \ge z_{\alpha}$, b) $Z \le -z_{\alpha}$, c) $|Z| \ge z_{\alpha/2}$. 2) X-s are normally distributed (or n > 30), σ^2 is unknown. The test statistic

$$T = \sqrt{n} \frac{\bar{X} - \mu_0}{S}.$$

T has the t-distribution with n-1 degrees of freedom under H_0 (exactly or approximately). The critical region: a) $T \ge t_{\alpha,n-1}$, b) $T \le -t_{\alpha,n-1}$, c) $|T| \ge t_{\alpha/2,n-1}$.