Chapter 8

- Two independent samples of sizes n_{1} and n_{2} respectively. The first one is from a population with mean μ_{1} and variance σ_{1}^{2}, the second one is from a population with mean μ_{2} and variance σ_{2}^{2}. If \bar{X}_{1} and \bar{X}_{2} are sample means of the samples, then distribution of the statistic

$$
\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}
$$

is approximately standard normal.

- If (and only if!) X-s have a normal distribution, statistics \bar{X} and S^{2} are independent.
- Distribution of S^{2}. If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

- Student t-distribution with m degrees of freedom: distribution of

$$
T=\frac{Z}{\sqrt{V / m}}
$$

where Z and V are independent, $Z \sim N(0,1), V \sim \chi_{m}^{2}$.

- If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then

$$
T=\sqrt{n} \frac{\bar{X}-\mu}{S}
$$

has t-distribution with $n-1$ degrees of freedom.

- Fisher F-distribution with m and n degrees of freedom: distribution of

$$
F=\frac{U / m}{V / n}
$$

where U and V are independent, $U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}$.

- Two independent samples of sizes n_{1} and n_{2} respectively. The first one is from a normal population with variance σ_{1}^{2}, the second one is from a normal population with variance σ_{2}^{2}. If S_{1}^{2} and S_{2}^{2} are sample variances of the samples, then the statistic

$$
\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}
$$

has F-distribution with $n_{1}-1$ and $n_{2}-1$ degrees of freedom.

