Chapter 10

• Two samples $X_1, ..., X_n$ and $Y_1, ..., Y_m$ (from normal populations or n and m are large enough); $Var(X_i) = \sigma_X^2$, $Var(Y_i) = \sigma_Y^2$. Testing $H_0: \sigma_X^2 = \sigma_Y^2$. Alternatives a) $H_1: \sigma_X^2 > \sigma_Y^2$, b) $H_1: \sigma_X^2 < \sigma_Y^2$, c) $H_1: \sigma_X^2 \neq \sigma_Y^2$. The level of significance α .

The test statistic

$$F = \frac{S_X^2}{S_Y^2}.$$

Critical region: a) $F \ge f_{\alpha,n-1,m-1}$, b) $F \le f_{1-\alpha,n-1,m-1}$, a) $F \ge f_{\alpha/2,n-1,m-1}$ or $F \le f_{1-\alpha/2, n-1, m-1}$

 \bullet P-value is the minimal level of significance such that H_0 is rejected for the

 \bullet Goodness-of-fit test. k cells, e_i are expected frequencies, o_i are observed frequencies, i = 1, ..., k. The test statistic

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}.$$

The critical region: $\chi^2 \ge \chi^2_{\alpha,k-1}$.

• Test for independence (categorical data: $r \times c$ contingency table). The test statistic

$$\chi^2 = \sum_{i=1}^{c} \sum_{i=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}.$$

The critical region: $\chi^2 \ge \chi^2_{\alpha,(r-1)(c-1)}$. The same test statistic and critical region are used for testing homogeneity.

Chapter 11

• Simple linear regression

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

x is regressor (predictor, independent variable, explanatory variable), Y is response (dependent variable), ϵ is error (random variable), $E\epsilon = 0$; β_0 (intercept) and β_1 (slope) are parameters of interest.

• Data: $(x_1, Y_1), (x_2, Y_2), ..., (x_n, Y_n),$

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_1, \epsilon_2, ..., \epsilon_n$ are independent normally distributed, $E\epsilon_i = 0$, $Var(\epsilon_i) = \sigma^2$.