Chapter 13

- One-way ANOVA. Assumptions: k samples of sizes $n_{1}, n_{2}, \ldots, n_{k}$ (from k populations) are independent and normally distributed with means $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and common variance σ^{2}.

Hypothesis

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k} \\
H_{1}: \mu_{i} \neq \mu_{j} \text { for at least one pair }(i, j)
\end{gathered}
$$

- Model. Data

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}, i=1, \ldots, k, j=1, \ldots, n_{i}, \epsilon_{i j} \sim N\left(0, \sigma^{2}\right) .
$$

An alternative form

$$
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad \mu=\frac{1}{k} \sum_{i=1}^{k} \mu_{i}
$$

(α_{i} is called the effect of the i-th treatment)

$$
\begin{aligned}
& H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0 \\
& H_{1}: \alpha_{i} \neq 0 \text { for at least one } i
\end{aligned}
$$

- Means and sums of squares:

$$
\begin{gathered}
\bar{Y}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i j}, \bar{Y} . .=\frac{1}{N} \sum_{i=1}^{k} n_{i} \bar{Y}_{i .}\left(N=\sum_{i=1}^{k} n_{i}\right), \\
S S T=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{. .}\right)^{2}
\end{gathered}
$$

(total sum of squares),

$$
S S A=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}
$$

(treatment sum of squares),

$$
S S E=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}
$$

(error sum of squares).

- Properties:

1) $S S T=S S A+S S E$,
2) $S S A$ and $S S E$ are independent,
3) $S S E / \sigma^{2} \sim \chi_{N-k}^{2}$,
4) $S S A / \sigma^{2} \sim \chi_{k-1}^{2}$ under H_{0}.

- Test statistic

$$
F=\frac{S S A /(k-1)}{S S E /(N-k)} .
$$

Under $H_{0} F$ has the Fisher distribution with $k-1$ and $N-k$ degrees of freedom. Test: if $F \geq f_{\alpha, k-1, N-k}$, then H_{0} is rejected.

- Bartlett's test (testing equality of the variances). Sample variances:

$$
S_{i}^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}
$$

Pooled variance

$$
S^{2}=\frac{1}{N-k} \sum_{i=1}^{k}\left(n_{i}-1\right) S_{i}^{2} .
$$

Test statistic

$$
B=\frac{\left[\left(S_{1}^{2}\right)^{n_{1}-1}\left(S_{2}^{2}\right)^{n_{2}-1} \cdots\left(S_{k}^{2}\right)^{n_{k}-1}\right]^{1 /(N-k)}}{S^{2}} .
$$

If $n_{1}=n_{2}=\ldots=n_{k}=n$, then H_{0} is rejected if

$$
B \leq b_{k}(\alpha ; n)
$$

where $b_{k}(\alpha ; n)$ is taken from the table of the Bartlett distribution. If n_{i} are different, then the critical value is approximative (see the book).

- A contrast

$$
w=\sum_{i=1}^{k} c_{i} \mu_{i}
$$

where $\sum_{i=1}^{k} c_{i}=0$. Many hypotheses about μ-s can be formulated as

$$
H_{0}: w=0 \quad H_{1}: w \neq 0
$$

Test: if

$$
\frac{\left(\sum_{i=1}^{k} c_{i} \bar{Y}_{i}\right)^{2}}{S_{p}^{2} \sum_{i=1}^{k}\left(c_{i}^{2} / n_{i}\right)} \geq f_{\alpha, 1, N-k},
$$

then H_{0} is rejected.

