Chapter 9

• $X_1, ..., X_n$ are normally distributed. $(1 - \alpha)$ confidence interval for σ^2

$$\left\lfloor \frac{(n-1)S^2}{\chi^2_{\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}} \right\rfloor$$

• Two samples. Confidence interval for the ratio of two variances σ_1^2/σ_2^2

$$\left[\frac{S_1^2}{S_2^2}\frac{1}{f_{\frac{\alpha}{2},n_1-1,n_2-1}}, \frac{S_1^2}{S_2^2}f_{\frac{\alpha}{2},n_2-1,n_1-1}\right]$$

• Maximum likelihood estimator

$$\hat{\theta}: L(X_1, ..., X_n) \to \max$$

where L is the likelihood function.

Chapter 10

• A statistical hypothesis is an assertion or conjecture concerning one or more populations.

It is formulated as one assertion against another assertion, that is there are a null hypothesis H_0 and an alternative hypothesis H_1 .

Decisions: a) H_0 is rejected, b) H_0 is not rejected.

• A test: the test statistic (a function of the data) and the critical region. If the test statistic belongs to the critical region, H_0 is rejected.

	H_0 is true	H_0 is false
H_0 is rejected	Type I error	Correct decision
H_0 is not rejected	Correct decision	Type II error

The level of significance is $\alpha = P(\text{Type I error})$. The power is $1 - \beta$ where $\beta = P(\text{Type II error})$.