Factorial Experiments

Example

The connection between yield of a chemical process and the two factors temperature and concentration is to be investigated. Four experiments are conducted, where two values of each factor are used. This gives 4 possible level combinations of the two factors to investigate the yield. The experiment is given in the table below, where the observed responses (yield) are also given:

Experiment no.	Temperature	Concentration	Yield
1	160	20	60
2	180	20	72
3	160	40	54
4	180	40	68
	x_{1}	x_{2}	y

The appropriate linear regression model is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\epsilon,
$$

Let us now recode the factors by introducing new independent variables

$$
\begin{aligned}
z_{1} & =\frac{x_{1}-170}{10} \\
z_{2} & =\frac{x_{2}-30}{10}
\end{aligned}
$$

The regression model is now

$$
y=\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{12} z_{12}+\epsilon
$$

with design matrix

$$
X=\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

The design matrix X of this model is obviously:

$$
X=\left[\begin{array}{llll}
1 & 160 & 20 & 3200 \\
1 & 180 & 20 & 3600 \\
1 & 160 & 40 & 6400 \\
1 & 180 & 40 & 7200
\end{array}\right]
$$

MINITAB fits the following model:
Regression Analysis: y versus $x 1$; $x 2$; $x 1 x 2$
The regression equation is
$\mathrm{y}=-14,0+0,500 \mathrm{x} 1-1,10 \mathrm{x} 2+0,00500 \mathrm{x} 1 \mathrm{x} 2$

Predictor	Coef
Constant	$-14,0000$
x1	0,500000
x2	$-1,10000$
x1x2	0,00500000

Regression Analysis: y versus $z 1 ; \mathrm{z} 2 ; \mathrm{z} 12$
The regression equation is
$y=63,5+6,50 \mathrm{z} 1-2,50 \mathrm{z} 2+0,500 \mathrm{z} 12$

Predictor	Coef
Constant	63,5000
z1	6,50000
z2	$-2,50000$
z12	0,500000

To see that we have the same fitted model, we can substitute the expressions for z_{1}, z_{2}, z_{12} in terms of the x_{1}, x_{2}, to get:

$$
\begin{aligned}
\hat{y} & =63.5+6.5 \cdot \frac{x_{1}-170}{10}-2.5 \cdot \frac{x_{2}-30}{10}+0.5 \cdot \frac{x_{1}-170}{10} \cdot \frac{x_{2}-30}{10} \\
& =-14+0.5 x_{1}-1.1 x_{2}+0.005 x_{1} x_{2}
\end{aligned}
$$

Design of Experiments (DOE) terminology

In the example we consider two factors, $\mathrm{A}=$ temperature, $\mathrm{B}=$ concentration, and the response $y=y i e l d$.
Each factor has two levels:

Factor	low	high
A	$160^{\circ}(-1)$	$180^{\circ}(+1)$
B	$20^{\circ}(-1)$	$40^{\circ}(+1)$

We have thus 2 factors which each can be on 2 levels, making $2^{2}=4$ possible combinations. The following is standard notation of such an experiment, a so called 2^{2} experiment:

A	B	AB	Level code	Response
-1	-1	1	1	y_{1}
1	-1	-1	a	y_{2}
-1	1	-1	b	y_{3}
1	1	1	ab	y_{4}
z_{1}	z_{2}	z_{12}		

Multivariate regression with orthogonal design matrix X (Chapter 12.7 in book)

Consider the vector/matrix setup $y=X \beta+\epsilon$, or written out,

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{11} & x_{21} & \cdots & x_{k 1} \\
1 & x_{12} & x_{22} & \cdots & x_{k 2} \\
\vdots & & & & \\
1 & x_{1 n} & x_{2 n} & \cdots & x_{k n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

We say that X has orthogonal columns if the product-sum of any two columns is 0 . This means here that:

$$
\begin{gathered}
\sum_{i=1}^{n} x_{j i} x_{\ell i}=0 \text { when } j \neq \ell(j, \ell=1, \ldots, k) \\
\sum_{i=1}^{n} x_{\ell i}=0 \text { for } \ell=1, \ldots, k
\end{gathered}
$$

A remarkable fact about the estimated regression coefficients in the above model is that each b_{j} depends on X only via the corresponding column for x_{j}, and that the estimated coefficients hence do not change when we look at submodels (i.e. take out variables from the model). The formulas are:

$$
\begin{align*}
b_{0} & =\bar{y} \\
b_{j} & =\frac{\sum_{i=1}^{n} x_{j i} y_{i}}{\sum_{i=1}^{n} x_{j i}^{2}} \text { for } j=1,2, \ldots, k \tag{3}
\end{align*}
$$

from which we get in particular

$$
\operatorname{Var}\left(b_{j}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{j i}^{2}} \quad \text { (prove it!) }
$$

We also have:

$$
\begin{equation*}
S S R=b_{1}^{2} \sum_{i=1}^{n} x_{1 i}^{2}+b_{2}^{2} \sum_{i=1}^{n} x_{2 i}^{2}+\cdots+b_{k}^{2} \sum_{i=1}^{n} x_{k i}^{2} \tag{4}
\end{equation*}
$$

Back to two-factor experiment

The regression model is now

$$
y=\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{12} z_{12}+\epsilon
$$

with design matrix

$$
X=\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

We get, using the formula in (3):

$$
\begin{aligned}
b_{0} & =\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}=63.5 \\
b_{1} & =\frac{-y_{1}+y_{2}-y_{3}+y_{4}}{4}=\frac{y_{2}+y_{4}}{4}-\frac{y_{1}+y_{3}}{4}=6.5 \\
b_{2} & =\frac{-y_{1}-y_{2}+y_{3}+y_{4}}{4}=\frac{y_{3}+y_{4}}{4}-\frac{y_{1}+y_{2}}{4}=-2.5 \\
b_{12} & =\frac{y_{1}-y_{2}-y_{3}+y_{4}}{4}=\frac{y_{4}-y_{3}}{4}-\frac{y_{2}-y_{1}}{4}=0.5
\end{aligned}
$$

DOE terminology - main effects:

$\hat{A}=2 b_{1}$
$=\frac{y_{2}+y_{4}}{2}-\frac{y_{1}+y_{3}}{2}$
$=$ mean response when A is high - mean response when A is low
Similarly, the estimated effect of B is:

$$
\hat{B}=2 b_{2}
$$

$=\frac{y_{3}+y_{4}}{2}-\frac{y_{1}+y_{2}}{2}$
$=$ mean response when B is high - mean response when B is low

Interaction effects

Now what is the DOE interpretation corresponding to b_{12} ? The answer is that $2 b_{12}$ is denoted $\widehat{A B}$ and called the estimated interaction effect between A and B. We have the following motivation for this, where the last line is the general definition of a two-factor interaction:

$$
\begin{aligned}
\widehat{A B} & =2 b_{1} \\
& =\frac{y_{4}-y_{3}}{2}-\frac{y_{2}-y_{1}}{2} \\
& =\frac{\text { estimated main effect of A when B is high }}{2} \\
& -\frac{\text { estimated main effect of A when B is low }}{2}
\end{aligned}
$$

$\hat{A}=\frac{72+68}{2}-\frac{60+54}{2}=13$
$\hat{B}=\frac{54+68}{2}-\frac{60+72}{2}=-5$
$\widehat{A B}=\frac{68-54}{2}-\frac{72-60}{2}=1$

Three factors

A	B	C	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	60
+	-	-	-	-	+	+	a	72
-	+	-	-	+	-	+	b	54
+	+	-	+	-	-	-	ab	68
-	-	+	+	-	-	+	c	52
+	-	+	-	+	-	-	ac	83
-	+	+	-	-	+	-	bc	45
+	+	+	+	+	+	+	abc	80
z_{1}	z_{2}	z_{3}	z_{12}	z_{13}	z_{23}	z_{123}		

The corresponding regression model is:

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{3} z_{3}+\beta_{12} z_{12}+\beta_{13} z_{13}+\beta_{23} z_{23}+\beta_{123} z_{123}+\epsilon \\
& \hat{\mathrm{A}}=\frac{72+68+83+80}{4}-\frac{60+54+52+45}{4}=23 \\
& \hat{\mathrm{~B}}=\frac{54+68+45+80}{4}-\frac{60+72+52+83}{4}=-5 \\
& \hat{\mathrm{C}}=\frac{52+83+45+80}{4}-\frac{60+72+54+68}{4}=1.5
\end{aligned}
$$

Two-factor interaction

$$
\begin{aligned}
\widehat{A B} & =2 b_{12} \\
& =\frac{\text { estimated main effect of A when B is high }}{2} \\
& -\frac{\text { estimated main effect of A when B is low }}{2} \\
& =\frac{\frac{68+80}{2}-\frac{45+54}{2}}{2}-\frac{\frac{83+72}{2}-\frac{52+60}{2}}{2} \\
& =1.5
\end{aligned}
$$

$$
\begin{aligned}
\widehat{A B C} & =2 b_{123} \\
& =\frac{\text { estimated interaction between } \mathrm{A} \text { and } \mathrm{B} \text { when } \mathrm{C} \text { is high }}{2} \\
& -\frac{\text { estimated interaction between } \mathrm{A} \text { and } \mathrm{B} \text { when } \mathrm{C} \text { is low }}{2}
\end{aligned}
$$

Three-factor interaction

Or: using + and - in columns:

A	B	C	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	60
+	-	-	-	-	+	+	a	72
-	+	-	-	+	-	+	b	54
+	+	-	+	-	-	-	ab	68
-	-	+	+	-	-	+	c	52
+	-	+	-	+	-	-	ac	83
-	+	+	-	-	+	-	bc	45
+	+	+	+	+	+	+	abc	80

$$
\mathrm{A} \hat{B}=\frac{60+68+52+80}{4}-\frac{72+54+83+45}{4}=1.5
$$

$$
A \hat{C}=\frac{60+54+83+80}{4}-\frac{72+68+52+45}{4}=10
$$

$$
B \hat{C}=\frac{45+80+60+72}{4}-\frac{83+52++68+54}{4}=0
$$

$$
\mathrm{ABC}=\frac{80+52+54+72}{4}-\frac{83+45+60+68}{4}=0.5
$$

Cube plot

Figure 3: Cube plot of data in the table for Three factors

Four factors - example

Factorial Fit: Y versus A; B; C; D

Estimated Effects and Coefficients for Y (coded units)

Term	Effect	Coef
Constant		72,250
A	$-8,000$	$-4,000$
B	24,000	12,000
C	$-2,250$	$-1,125$
D	$-5,500$	$-2,750$
A*B	1,000	0,500
A*C	0,750	0,375
A*D	$-0,000$	$-0,000$
B*C	$-1,250$	$-0,625$
B*D	4,500	2,250
C*D	$-0,250$	$-0,125$
A*B*C	$-0,750$	$-0,375$
A*B*D	0,500	0,250
A*C*D	$-0,250$	$-0,125$
B*C*D	$-0,750$	$-0,375$
A*B*C*D	$-0,250$	$-0,125$

Analysis of Variance for Y (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	2701,25	2701,25	675,313	\star	\star
2-Way Interactions	6	93,75	93,75	15,625	\star	\star
3-Way Interactions	4	5,75	5,75	1,438	\star	\star
4-Way Interactions	1	0,25	0,25	0,250	$*$	$*$
Residual Error	0	\star	$*$	$*$		
Total	15	2801,00				

Example: Three factors and replicate

2 MINTAB - Untitled

517 Worksheet 1 \%**															
+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C1:
	StdOrder	RunOrder	CenterPt	Blocks	A	B	c	Y							
1	1	1	1	1	-1	-1	-1	59							
2	,	2	1	1	1	-1	-1	74							
3	3	3	1	1	-1	1	-1	50							
4	4	4	1	1	1	1	-1	69							
5	5	5	- 1	1	-1	-1	1	50							
6	6	6	1	1	1	-1	1	81							
7	7	7	1	1	-1	1	1	46							
8	8	8	1	1	1	1	1	79							
9	9	9	1	1	-1	-1	-1	61							
10	10	10	1	1	1	-1	-1	70							
11	11	11	1	1	-1	1	-1	58							
12	12	12	1	1	1	1	-1	67							
13	13	13	1	1	-1	-1	1	54							
14	14	14	1	1	1	-1	1	85							
15	15	15	1	1	-1	1	1	44							
16	16	16	1	1	1	1	1	81							
17															
18															
19															
20															

Factorial Fit: Y versus A; B; C
Estimated Effects and Coefficients for Y (coded units)

Term	Effect	Coef	SE Coef	T	P
Constant		64,250	0,7071	90,86	0,000
A	23,000	11,500	0,7071	16,26	0,000
B	$-5,000$	$-2,500$	0,7071	$-3,54$	0,008
C	1,500	0,750	0,7071	1,06	0,320
A*B	1,500	0,750	0,7071	1,06	0,320
A*C	10,000	5,000	0,7071	7,07	0,000
B*C	0,000	0,000	0,7071	0,00	1,000
A*B*C	0,500	0,250	0,7071	0,35	0,733

$S=2,82843 \quad R-S q=97,63 \% \quad R-S q(a d j)=95,55 \%$

Analysis of Variance for Y (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	2225,00	2225,00	741,667	92,71	0,000
2-Way Interactions	3	409,00	409,00	136,333	17,04	0,001
3-Way Interactions	1	1,00	1,00	1,000	0,13	0,733
Residual Error	8	64,00	64,00	8,000		
\quad Pure Error	8	64,00	64,00	8,000		

Blocking in $2^{\wedge} k$ experiments

Stdo		exp	me	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Two blocks:

Use column ABC as generator, i.e
Block 1 consists of experiments with $A B C=-1$
Block 2 consists of experiments with $A B C=1$

Stdo	A	B	C	AB	AC	BC	ABC	Blokk
1	-1	-1	-1	1	1	1	-1	1
4	1	1	-1	1	-1	-1	-1	1
6	1	-1	1	-1	1	-1	-1	1
7	-1	1	1	-1	-1	1	-1	1
2	1	-1	-1	-1	-1	1	1	2
3	-1	1	-1	-1	1	-1	1	2
5	-1	-1	1	1	-1	-1	1	2
8	1	1	1	1	1	1	1	2

Normal Probability Plot of the Standardized Effects

StdO	A	B	C	AB	AC	BC	ABC	Blokk
1	-1	-1	-1	1	1	1	-1	1
4	1	1	-1	1	-1	-1	-1	1
6	1	-1	1	-1	1	-1	-1	1
7	-1	1	1	-1	-1	1	-1	1
2	1	-1	-1	-1	-1	1	1	2
3	-1	1	-1	-1	1	-1	1	2
5	-1	-1	1	1	-1	-1	1	2
8	1	1	1	1	1	1	1	2

The interaction ABC is confounded ("mixed") with the block effect. This means that the value of the estimated coefficient of $A B C$ can be due to both interaction effect and block-effect.

Suppose all Y in block 2 are increased by a value h . Then the estimated effect of ABC will increase by h. But one cannot know from observations whether this is due to the interaction $A B C$ or the block effect.

On the other hand, the estimated main effects $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and the two-factor interactions $A B, A C, B C$ are not changed by the h. These are of most importance to estimate, so the choice of blocking seems reasonable

Four blocks in $2^{\wedge} 3$ experiment

Need two columns of $+/$ - to define 4 blocks. Turns out that the best option is to use two two-factor interactions, e.g. AB and AC (which is default in MINITAB

Block 1: Experiments where $A B=A C=-1$
Block 2: Experiments where $A B=-1, A C=1$
Block 3: Experiments where $A B=1, A C=-1$
Block 4: Experiments where $A B=A C=1$

Stdo	A	B	C	AB	AC	BC	ABC	Blokl
1	-1	-1	-1	1	1	1	-1	4
2	1	-1	-1	-1	-1	1	1	1
3	-1	1	-1	-1	1	-1	1	2
4	1	1	-1	1	-1	-1	-1	3
5	-1	-1	1	1	-1	-1	1	3
6	1	-1	1	-1	1	-1	-1	2
7	-1	1	1	-1	-1	1	-1	1
8	1	1	1	1	1	1	1	4

Block structure is as follows:

Stdo	A	B	C	AB	AC	BC	ABC	Blokk
2	1	-1	-1	-1	-1	1	1	1
7	-1	1	1	-1	-1	1	-1	1
3	-1	1	-1	-1	1	-1	1	2
6	1	-1	1	-1	1	-1	-1	2
4	1	1	-1	1	-1	-1	-1	3
5	-1	-1	1	1	-1	-1	1	3
1	-1	-1	-1	1	1	1	-1	4
8	1	1	1	1	1	1	1	4

Interaction effects $A B$ and $A C$ are confounded with the block effect, since they are generators for the blocks. In addition, their product $A B^{*} A C=A A B C=B C$ is confounded with the block effect (Note: the BC column is constant within each block.

Adding h2 to block 2, h3 to block 3, h4 to block 4 does not change estimated effects of A, B, C, and also does not change the third order interaction $A B C$. However, e.g. AB will change by $2 \mathrm{~h} 3+2 \mathrm{~h} 4-2 \mathrm{~h} 2$ and we do not know whether this is due to an interaction effect or blocking effect: This is CONFOUNDING

How to determine which columns to use for blocking?

Idea: Try to leave estimates for main effects and low order interactions unchanged by blocking.

Note: $\mathrm{I}=\mathrm{AA}=\mathrm{BB}=\mathrm{CC}$ where I is a column of 1 's
Find the blocks for a $2^{\wedge} 3$ experiment using columns $A B C$ and $A C$.
The interaction between $A B C$ and $A C$ is

$A B C * A C=A A^{*} B^{*} C C=B$

which is a main effect, which hence is confounded with the block effect (in addition to ABC and AC)

Generalisering

Gå ut i frå at vi skal dele eit 2^{6} forsok opp i 8 blokker etter blokkfaktorane $\mathrm{B}_{1}=\mathrm{ACE}$
$\mathrm{B}_{2}=\mathrm{ABEF}$ og $\mathrm{B}_{3}=\mathrm{ABCD}$. Blokkinndelinga folgjer då følgjande mønster:

Blokk 1	Blokk 2	Blokk 3	Blokk 4	Blokk 5	Blokk 6	Blokk 7	Blokk 8
$(---)$	$(+\cdots)$	$(-+-)$	$(++-)$	$(--+)$	$(+-+)$	$(-++)$	$(+++)$

Vi fàr:
$\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{ACEABEF}=\mathrm{BCF}$
$\mathrm{B}_{1} \mathrm{~B}_{3}=\mathrm{ACEABCD}=\mathrm{BDE}$
$\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{ABEFABCD}=\mathrm{CDEF}$
$\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}=\mathrm{ACEABEFABCD}=\mathrm{ADF}$

Som saman med $\mathrm{B}_{1}=\mathrm{ACE}, \mathrm{B}_{2}=\mathrm{ABEF}$ og $\mathrm{B}_{3}=\mathrm{ABCD}$ blir konfundert med blokkeffekten.

Example obligatory project

"From a seed to a nice plant"

StdOrder	RunOrder	CenterPt	Blocks	Seeds	Watering fluid	Growth medium	Additional nutrients	Length (response variable)
5	1	1	1	-1	-1	1	-1	0.1
2	2	1	1	1	-1	-1	-1	20.3
16	3	1	1	1	1	1	1	0.9
9	4	1	1	-1	-1	-1	1	0.2
15	5	1	1	-1	1	1	1	0.0
12	6	1	1	1	1	-1	1	6.9
6	7	1	1	1	-1	1	-1	1.1
1	8	1	1	-1	-1	-1	-1	11.7
10	9	1	1	1	-1	-1	1	5.9
13	10	1	1	-1	-1	1	1	0.0
4	11	1	1	1	1	-1	-1	23.3
8	12	1	1	1	1	1	-1	4.5
7	13	1	1	-1	1	1	-1	9.1
3	14	1	1	-1	1	-1	-1	12.2
14	15	1	1	1	-1	1	1	1.5
11	16	1	1	-1	1	-1	1	2.9

Table 3.1 Matrix of the design of experiments.

Figure 1.1 Box and 16 containers with the seeds: during the experience all the glasses were put inside the green box which was covered with a plastic film on the top to guarantee proper humidity conditions.

Factor	-	+
Seeds (A)	Broccoli Decicco	Sunflowers
Watering fluid (B)	Coffee	Water
Growth medium (C)	Soil	Cotton
Additional nutrients (D)	Without	With

Estimated Effects and Coefficients for length (coded units)

Term	Effect	Coef
Constant		6,287
A	3,525	1,763
B	2,375	1,187
C	$-8,275$	$-4,138$
D	$-8,000$	$-4,000$
A*B	$-0,675$	$-0,337$
A*C	$-3,825$	$-1,913$
A*D	$-0,500$	$-0,250$
B*C	0,575	0,287
B*D	$-1,600$	$-0,800$
C*D	4,900	2,450
A*B*C	$-0,875$	$-0,438$
A*B*D	0,100	0,050
A*C*D	2,000	1,000
B*C*D	$-1,650$	$-0,825$
A*B*C*D	1,150	0,575

MINITAB plots

Figure 5.2 Pareto-chart of the effects with terms up to $4^{\text {th }}$ order.

Figure 5.3 Normal plot of the effects with terms up to $4^{\text {th }}$ order.
terms up to $2^{\text {nd }}$ order

Figure 5.6 Pareto-chart of the effects with

Fractional Factorial Designs
 at Two Levels

12.1. REDUNDANCY

Consider a two-level design in seven variables. A complete factorial arrangement requires $2^{7}=128$ runs. From these runs 128 statistics can be calculated, which estimate the following effects:

		interactions					
average	effects	2-factor	3-factor	4-factor	5-factor	6-factor	7-factor
1	7	21	35	35	21	7	1

Now the fact that all these effects can be estimated does not imply that they all are of appreciable size. There tends to be a certain hierarchy. In terms of absolute magnitude, main effects tend to be larger than two-factor interactions, which in turn tend to be larger than three-factor interactions, and so on. This fact relates directly to the properties of smoothness and similarity discussed earlier. (In particular, for quantitative variables the main effects and interactions can be associated with the terms of a Taylor series expansion of a response function. Ignoring, say, three-factor interactions corresponds to ignoring terms of third order in the Taylor expansion.)

Assuming third and fourth order interactions are 0

Figure 5.7 Normal plot of the effects with terms up to $2^{\text {nd }}$ order.

Interaction plots

The plots of the interactions CD and AC are the following:

Figure 6.1 Interaction plot between growth medium and additional nutrients (CD)

Figure 6.2 Interaction plot between seeds and growth medium (AC).

Fractional Factorial Design

Reactor Example i BHH kap. 12

Runs:
16 Base Design:
5; 16
Resolution: Fraction:

Design Generators: $\mathrm{E}=\mathrm{ABCD}$

Defining Relation: $I=A B C D E$

Alias Structure
$I+A B C D E$
$A+B C D E$
$\mathrm{B}+\mathrm{ACDE}$
$C+A B D E$
$\mathrm{D}+\mathrm{ABCE}$
$\mathrm{E}+\mathrm{ABCD}$
$\mathrm{AB}+\mathrm{CDE}$
$A C+B D E$
$A D+B C E$
$A E+B C D$
$B C+A D E$
$B D+A C E$
$B E+A C D$
$\begin{aligned} & \mathrm{BE}+\mathrm{ACD} \\ & \mathrm{CD}\end{aligned}+\mathrm{ABE}$
$C D+A B E$
$C E$
$D E+A B C$

Estimated Effects and Coefficients for Y (coded units)
\(\left.\begin{array}{lrrc}Term \& Effect \& Coef \& "Fasit" fra fullt fors \varnothing \mathrm{k}

Constant \& \& 65,250 \& 65,5\end{array}\right]\)| A |
| :--- |
| B |

Factorial Fit: Y versus A; B; C; D; E

$S=$ *

Data Display

Row	A	B	C	D	E	Y
1	-1	-1	-1	-1	1	56
2	1	-1	-1	-1	-1	53
3	-1	1	-1	-1	-1	63
4	1	1	-1	-1	1	65
5	-1	-1	1	-1	-1	53
6	1	-1	1	-1	1	55
7	-1	1	1	-1	1	67
8	1	1	1	-1	-1	61
9	-1	-1	-1	1	-1	69
10	1	-1	-1	1	1	45
11	-1	1	-1	1	1	78
12	1	1	-1	1	-1	93
13	-1	-1	1	1	1	49
14	1	-1	1	1	-1	60
15	-1	1	1	1	-1	95
16	1	1	1	1	1	82

From Exam in TMA4260 Industrial Statistics, december 2003, Exercise 2

A company decides to investigate the hardening process of a ballbearing production.
The following four factors are chosen:
A: content of added carbon
B: Hardening temperature
C: Hardening time
D: Cooling temperature.

Row	StdOrder	A	B	C	D	Hardhet
1	1	-1	-1	-1	1	15.32
2	2	1	-1	-1	-1	18.24
3	3	-1	1	-1	-1	17.18
4	4	1	1	-1	1	16.90
5	5	-1	-1	1	-1	15.95
6	6	1	-1	1	1	17.52
7	7	-1	1	1	1	14.26
8	8	1	1	1	-1	18.59

a) What is the generator and the defining relation of the design, and what is the design's resolution? Write down the alias structure.

Find the estimates of the main effect of A and the interaction effect $A C$.
b) What is the variance of the main effect A and the interaction $A C$?

Assume that the st deviation sigma has been estimated from other experiments, by $s=0.312$ with 9 degrees of freedom (in the exam, this had been done in Ex 1.) Use this estimate to find out whether the interaction AC is significantly different from 0 (i.e. "active") Use 5% significance level. What is the conclusion of the experiment so far?

The company is well satisfied with the results so far and they decide to carry out also the other half fraction. The result of the other half fraction is given below.

$$
\begin{array}{lll}
\text { Adj MS } & \text { F } & \text { P } \\
2.4753 & * & * \\
0.5842 & * & * \\
0.0000 & &
\end{array}
$$

Analysis of Variance for Hardhet (coded units)

```
Source
Source
2-Way Interactions
```

Residual Error
Resial
Total

Use this to find unconfounded estimates for the main effects and the two-factor interactions.

Assume that one would like to estimate the variance of the effects from the higher order interactions. Explain how this can be done, and find the estimate Is it wise to include the four-factor interaction in this calculation? Why (not)?

Later, one of the operators that participated in the experiments asked whether one could have carried out the first half fraction in (a) in two blocks. This would, he said, have simplified considerably the performance of the experiments. What answer would you give to the operator?

From Exam in SIF 5066 Experimental design and..., May 2003, Exercise 1
A company making ballbearings experienced problems with the lifetimes of the products. In an experiments that they carried out they considered the factors

A: type of ball - standard (-) or modified (+)
B: type of cage - standard (-) or modified (+)
C: type of lubricate - standard (-) or modified (+)
D: quantity of lubricate - normal (-) or large (+)
The repsonse was the lifetime of the ballbearing in an accelerated life testing experiment. The results are given on the next page.

a) What type of experiment is this? What is the defining relation? What is the resolution? Calculate estimates of the main effect of A and the two-factor interaction AB .
b) Estimated contrasts for B,C,D,AC,AD are, respectively, $0.60,0.31,0.22,-0.11$, -0.01. What can you say about the estimated effects for CD, BD, BC. BCD, ACD, ABD,ABC?
Assume that factors C and D do not influence the response. Explain why this is then a $2^{\wedge} 2$ experiment with replicate. Calculate an estimate for the variance of the effects, and find out whether A, B and $A B$ are now significant.
c) Give an interpretation of the results. The experiment was in fact carried out in two blocks, where experiments 1-4 was one block and 5-8 the other. How is this blocking constructed? How will we need to modify the analysis of significance in (b)? (Assume again that C,D do not influence the response)

