Solutions. TMA4255, 2019 (June)

1.

a) The model is

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}, \ i = 1, 2, ..., a, \ j = 1, 2, ..., b, \ k = 1, 2, ..., n$$

(a = 3, b = 4, n = 2), where α_i is effect of factor A, β_j is effect of factor B, $(\alpha\beta)_{ij}$ is effect of interaction,

$$\sum_{i=1}^{a} \alpha_i = 0, \ \sum_{j=1}^{b} \beta_j = 0, \ \sum_{i=1}^{a} (\alpha\beta)_{ij} = 0, \ \sum_{j=1}^{b} (\alpha\beta)_{ij} = 0,$$

 ϵ -s are independent and normally distributed with zero expectation and some (unknown) variance σ^2 .

Test on the interaction:

$$H_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = \dots = (\alpha\beta)_{ab} = 0$$

 $H_1: (\alpha\beta)_{ij} \neq 0$ for at least one (i, j).

Test statistic is

$$F = \frac{MS(AB)}{MSE} = \frac{SS(AB)/(a-1)(b-1)}{MSE/ab(n-1)}.$$

 H_0 is rejected for large values of F. Under H_0 the test statistic has F-distribution with (a-1)(b-1) and ab(n-1) degrees of freedom. H_0 is rejected if $F > f_{\alpha,(a-1)(b-1),ab(n-1)}$. In our case F = 2.79, $f_{0.05,6,12} = 3.00$. H_0 is not rejected (there is no interaction between the two factors).

The main effects are significant because

$$F = 93.52 > 3.89 = f_{0.05,2,12}$$

for factor A,

$$F = 1330.48 > 3.49 = f_{0.05,3,12}$$

for factor B.

b)

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (Y_{ijk} - \bar{Y}_{ij\cdot})^2,$$
$$SS(AB) = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{Y}_{ij\cdot} - \bar{Y}_{i\cdot\cdot} - \bar{Y}_{\cdotj\cdot} + \bar{Y}_{\cdot\cdot\cdot})^2,$$

$$S^2 = \frac{SSE}{ab(n-1)} = MSE = 0.537.$$

A new estimator can be derived as follows. Since

$$\frac{SSE}{\sigma^2} \sim \chi^2_{ab(n-1)}, \ \frac{SS(AB)}{\sigma^2} \sim \chi^2_{(a-1)(b-1)},$$

we get

$$\frac{SSE}{\sigma^2} + \frac{SS(AB)}{\sigma^2} \sim \chi^2_{(a-1)(b-1)+ab(n-1)},$$

therefore a reasonable estimator (unbiased) is

$$\hat{\sigma}^2 = \frac{SSE + SS(AB)}{(a-1)(b-1) + ab(n-1)} = \frac{SSE + SS(AB)}{18}.$$

Computed

$$\hat{\sigma}^2 = \frac{8.99 + 6.45}{18} = 0.8578.$$

2.

a) The observations Y_{ijk} can be renumbered from 1 to 24, and for each of them, the corresponding x_{1i} and x_{2j} are values of the two explanatory variables.

Assumptions: the variables ϵ_{ijk} are independent and normally distributed with zero mean and some (unknown) variance σ^2 .

Variation explained by the model:

$$R^2 = \frac{SSR}{SST} = \frac{2242.6}{2261.4} = 0.992.$$

Significance is tested by

$$F = \frac{SSR/2}{SSE/21} = 1251.4$$

This is significant by any reasonable significance level.

For testing

$$H_0: \beta_r = 0$$
 versus $H_1: \beta_r \neq 0, \ r = 1, 2,$

test statistics

$$T_r = \frac{\hat{\beta}_r}{SD(\hat{\beta}_r)}$$

are used. Under H_0 each of these statistics has t-distribution with 21 degrees of freedom, therefore H_0 is rejected if $|T_r| > t_{0.005,21} = 2.831$. So, both hypotheses are rejected.

The tests are essentially about the main effects, so the results of Problem 1 are confirmed.

3.

Generally $P(H_0 \text{ is rejected}) = P(\bar{X} > c).$ a)

$$\alpha = P(\bar{X} > c | \mu = 0) = P\left(\sqrt{n}\frac{\bar{X}}{\sigma} > \sqrt{n}\frac{c}{\sigma} | \mu = 0\right) = P\left(Z > \sqrt{n}\frac{c}{\sigma}\right),$$

therefore

$$\sqrt{n}\frac{c}{\sigma} = z_{\alpha},$$

and

$$c = \frac{\sigma}{\sqrt{n}} z_{\alpha}.$$

We have

$$0.5 = P\left(\bar{X} > \frac{\sigma}{\sqrt{n}} z_{\alpha} | \mu = 1\right) = P\left(\sqrt{n} \frac{\bar{X} - 1}{\sigma} > \sqrt{n} \frac{\sigma z_{\alpha} / \sqrt{n} - 1}{\sigma} | \mu = 1\right) = P(Z > z_{\alpha} - \sqrt{n} / \sigma),$$

hence $z_{\alpha} - \sqrt{n}/\sigma = z_{0.5} = 0$, i.e. $z_{\alpha} = 2$, and $\alpha = 0.0228$.

b) We have (see solution of (a))

$$P\left(\bar{X} > \frac{\sigma}{\sqrt{n}} z_{\alpha} | \mu = 2\right) = P(Z > z_{\alpha} - 2\sqrt{n}/\sigma) = P(Z > -2) = P(Z < 2) = \Phi(2) = 0.9772.$$

4.

a) Test H_0 : independence vs. H_1 : not independence. Test statistic

$$\chi^2 = \sum_{j=1}^{3} \sum_{i=1}^{2} \frac{(o_{ij} - e_{ij})^2}{e_{ij}},$$

where o_{ij} and e_{ij} are observed and expected frequencies, respectively. H_0 is rejected if $\chi^2 > \chi^2_{0.01,2}$. Find expected frequencies:

	Non-smoker	Moderate smoker	Heavy smoker	
High blood pressure	33.24	30.31	24.44	88
Normal blood pressure	34.76	31.69	25.56	92
	68	62	50	180

Thus, $\chi^2 = 16.982$, $\chi^2_{0.01,2} = 9.21$. H_0 is rejected.

5.

a) P-value is wrong. It must be between 0 and 1 (propability!). The right value is $p = P(|Z| > 0.31) = 2P(Z < -0.31) = 2 \cdot 0.3783 = 0.7566$ (0,760 in the MINITAB output).

b) If the confidence level is $1 - \alpha$, then the $100(1 - \alpha)\%$ confidence interval is

$$\left[\bar{Y} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{Y} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

Since 95% interval is [-0.234, 0.320] and $z_{0.025} = 1.96$, $z_{0.00005} = 3.891$, the 99.99% interval is [-0.507,0.593].