TMA4255 Applied Statistics Solution to Exercise 8

Problem 1

a) Two-sample T-test:

We assume that

• $X_1, \ldots, X_n, Y_1, \ldots, Y_m, X_j \sim N(\mu_X, \sigma_X^2), Y_j \sim N(\mu_Y, \sigma_Y^2),$ n = 10, m = 8.• $\sigma_X^2 = \sigma_Y^2$ Two-Sample T-Test and CI: X_i; Y_i

Two-sample T for X_i vs Y_i

 N
 Mean
 StDev
 SE
 Mean

 X_i
 10
 5201,3
 10,2
 3,2

 Y_i
 8
 5182,0
 19,6
 6,9

```
Difference = mu (X_i) - mu (Y_i)
Estimate for difference: 19,3000
95% CI for difference: (4,1579; 34,4421)
T-Test of difference = 0 (vs not =): T-Value = 2,70 P-Value = 0,016 DF = 16
Both use Pooled StDev = 15,0584
```

Explanation of the result from Minitab:

- \underline{N} : The number of observations in each column.
- <u>MEAN</u>: average $= \frac{1}{N} \sum_{j=1}^{N} X_j = \bar{X}.$
- <u>STDEV</u>: $S = \sqrt{\frac{1}{n-1} \sum_{j=1}^{N} (X_j \bar{X})^2}.$
- <u>SE MEAN</u>: standard deviation for \overline{X} , this is equal to $\frac{S}{\sqrt{N}}$. (correspondingly for Y.)
- <u>95 PCT CI</u>: 95 % confidence interval for $(\mu_X \mu_Y)$.

The T-statistic is given by

$$T = \frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{S^2}{n} + \frac{S^2}{m}}} \sim T_{n+m-2} = T_{16}$$

(Student-*T*-distributed with 16 degrees of freedom.) Here S^2 is pooled-stdev (see page 308) i.e. estimated variance under the assumption that the two samples have the same

variance:

$$S = \sqrt{\frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}}$$
$$= \sqrt{\frac{\sum_{j=1}^n (X_j - \bar{X})^2 + \sum_{j=1}^n (Y_j - \bar{Y})^2}{n+m-2}} = 15.1$$

To find a 95% confidence interval we set ut:

The confidence interval is therefore given by:

$$\bar{X} - \bar{Y} \pm t_{0.025,16} \sqrt{\frac{1}{n} + \frac{1}{m}} S = 5201.3 - 5182.0 \pm 2.12 \sqrt{\frac{1}{10} + \frac{1}{8}} 15.1$$

= [4.2, 34.4]

• <u>TTEST</u>: Here we test H_0 : $\mu_X = \mu_Y$ against H_1 : $\mu_X \neq \mu_Y$ The test is based on the same *T*-statistic:

$$T_{0 \text{ obs}} = \frac{5201.3 - 5182.0}{\sqrt{\frac{1}{10} + \frac{1}{8}}15.1} = 2.7$$

(We write $T_{0 \text{ obs}}$ to indicate that we observe T under H_0 , i.e. $\mu_X - \mu_Y = 0$.)

• $\underline{\mathbf{P}}$: *p*-value,

$$p = P(T_{16} \ge 2.7) + P(T_{16} \le -2.7) = 2P(T_{16} \ge 2.7) = 0.016$$

(Two sided test and symmetric *T*-distribution.)

): With significance level $\alpha = 0.01$ we can *not* reject the hypothesis because $p > \alpha$, i.e. we can not assume unequal strength in the copper wires.

b) Variance analysis of one-way grouping:

Rename the variable (to get the same notation as in the book)

$$X_1, X_2, \dots, X_n \to X_{11}, X_{12}, \dots, X_{1n_1}$$

 $Y_1, Y_2, \dots, Y_n \to X_{21}, X_{22}, \dots, X_{2n_2}$

and we have that $n_1 = 10$ and $n_2 = 8$. $N = n_1 + n_2 = 18$. (Total number of observations) Assumptions:

$$E(X_{1j}) = \mu_1, \quad j = 1, \dots, n_1$$

 $E(X_{2j}) = \mu_2, \quad j = 1, \dots, n_2$
 $Var(X_{ij}) = \sigma^2, \quad i = 1, 2$

(i.e. the number of groups=2). We follow the notation from the book

$$\mu_i = \mu + \alpha_i,$$

og $\mu = \frac{n_1 \mu_1 + n_2 \mu_2}{N}$ is "grand mean". We call α_i the effect of an observation coming from group *i*.

 \underline{Model} :

 $X_{ij} = \mu + \alpha_i + \epsilon_{ij}$, der ϵ_{ij} er tilfeldige feil.

Variance table:

One-way ANOVA: X_i; Y_i MS F Source DF SSР 1 1656 1656 7,30 0,016 Factor Error 16 3628 227 Total 17 5284 S = 15,06 R-Sq = 31,33% R-Sq(adj) = 27,04% Individual 95% CIs For Mean Based on Pooled StDev Mean StDev Level N -+---+-X_i 10 5201,3 10,2 (-----) Y_i 8 5182,0 19,6 (-----)

```
5172 5184 5196
```

```
Pooled StDev = 15,1
```

5208

KILDEFrihetsgraderKvadratsum
$$SSA =$$
"Mean-square" F_{obs} $p-verdi$ faktor $r-1$ $\sum_{i=1}^{r} n_i(\bar{X}_i - \bar{X})^2$ $SSA/(r-1)$ $\frac{SSA}{r-1}$
 $\frac{SSE}{N-r}$ $P(F_{r-1,N-1})$
 $\geqslant F_{obs}$ feil $N-r$ $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (\bar{X}_{ij} - \bar{X}_i)^2$ $SSE/(N-r)$
 $SS_{tot} =$ total $N-1$ $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2$

<u>The test</u> that has been done is:

$$H_0 \qquad : \qquad \mu_1 = \mu_2 \tag{1}$$

$$H_1 \qquad : \qquad \mu_1 \neq \mu_2. \tag{2}$$

Under $H_0 \ \mu_1 = \mu_2 = \mu$ so that an equivalent test is:

$$H_0 \qquad : \qquad \alpha_1 = \alpha_2 \tag{3}$$

$$H_1 \qquad : \qquad \alpha_1 \neq 0 \text{ eller } \alpha_2 \neq 0. \tag{4}$$

p-verdi:

$$p = P(F_{r-1,N-r} \ge F_{obs}) = 1 - P(F_{1,16} \le 7.30) = 0.016$$

): We have $p = 0.016 > \alpha = 0.01$, i.e. we do not reject H_0 .

The p-value is the same as for the test in a) because

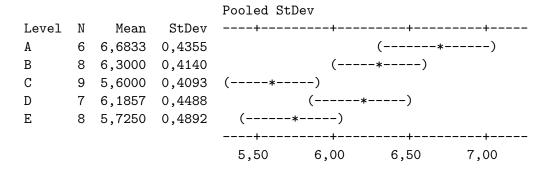
$$T_{\nu}^2 = F_{1,\nu}$$

Problem 2

a)

Results for: lympho.MTW One-way ANOVA: count versus drug Source DF SSMSF Ρ 5,703 1,426 7,38 0,000 drug 4 6,372 0,193 Error 33 Total 37 12,075 S = 0,4394R-Sq = 47,23%R-Sq(adj) = 40,83%

Individual 95% CIs For Mean Based on



Pooled StDev = 0,4394

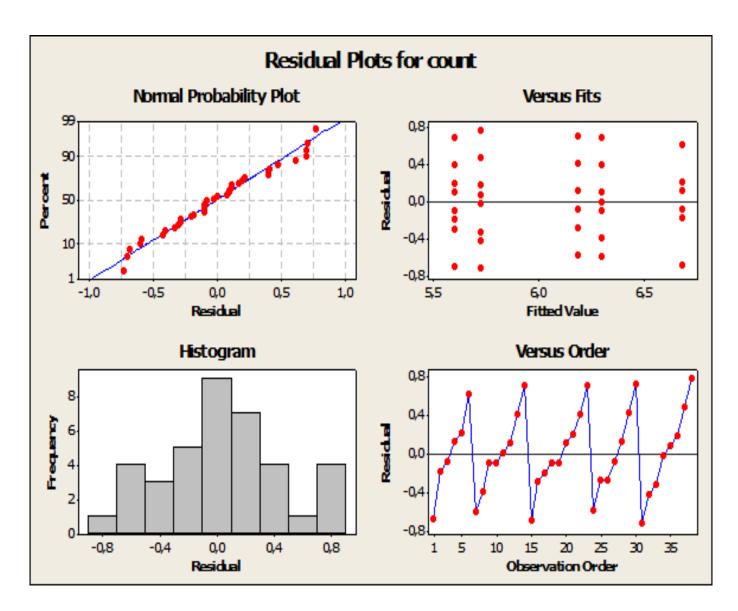
The effect of drug is significant.

Bartlett's Test (Normal Distribution) Test statistic = 0,29; p-value = 0,991

Levene's Test (Any Continuous Distribution) Test statistic = 0,11; p-value = 0,978

The variances for the different groups are not found to be different.

Residual plots show an adequate model fit wrt normality of error terms.



b) Using the method of Bonferroni to perform four given comparisons we will use significance level 0.05/4 = 0.125. This was given in the call to Fisher method in MINITAB (meaning that significance level 0.125 is used below).

Grouping Information Using Fisher Method

N	Mean	Grouping
6	6,6833	А
8	6,3000	A B
7	6,1857	A B
8	5,7250	ВC
9	5,6000	С
	6 8 7 8	6 6,6833 8 6,3000 7 6,1857

Means that do not share a letter are significantly different.

This means that when we ONLY compare A vs B, B vs C, C vs D and D vs E, we find that

- A and B does not differ,
- B and C differs
- C and D differs
- D and E does not differ.

c) We now study all pairwise comparisions with the method of Tukey.

Grouping Information Using Tukey Method

drug N Mean Grouping 6 6,6833 A А В 8 6,3000 A B D 7 6,1857 АВС Е 8 5,7250 ВC С 9 5,6000 С

Means that do not share a letter are significantly different.

Tukey 95% Simultaneous Confidence Intervals All Pairwise Comparisons among Levels of drug

```
Individual confidence level = 99,32%
```

Using Tukeys method we conclude that A is different from both C and E, and B is different from C, but the finding from b) above (C and D differ) is not now significant when more tests are performed.

Problem 3

$$A_1, \ldots, A_4 =$$
 workers (added as $1, \ldots, 4$ in C2)
 $M_1, \ldots, M_4 =$ machines (added as $1, \ldots, 4$ in C3)

a) We assume that the skills of the workers do not influence the production units. This means we have one-way grouping, and we assume the model

$$Y_{ij} = \mu + \alpha_j + \epsilon_{ij}, \quad \sum_j \alpha_j = 0$$

Here:

- Y_{ij} : number of produced units by machine j and worker i.
- $E(Y_{ij}) = \mu + \alpha_j$.
- ϵ_{ij} assumed independent and $\sim N(0, \sigma^2) \ \forall i, j.$
- α_j is a factor which is special for machine j.
- μ : "average effect"

Wish to test wether the machines have different capacities:

$$H_0 : \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

$$H_1 : \text{at least one not equal.}$$

The total variation in the data $SS_{\text{tot}} = \sum_{j=1}^{4} \sum_{i=1}^{4} (Y_{ij} - \bar{Y}_{..})^2$, can be written as a sum of two sums of squares:[Theorem. 13.1]

$$SS_{\text{tot}} = SS_A + SS_E = \sum_{j=1}^{4} 4(\bar{Y}_{.j} - \bar{Y}_{..})^2 + \sum_{j=1}^{4} \sum_{i=1}^{4} (Y_{ij} - \bar{Y}_{.j})^2$$

It can be shown that [Teorem 13.2]

$$E(SS_A) = (4-1)\sigma^2 + \sum_{i=1}^4 4\alpha_i^2 = 3\sigma^2 + 4\sum_i \alpha_i^2$$
$$E(SS_E) = (16-4)\sigma^2$$
$$F = \frac{MS_A}{MS_E} = \frac{SS_A/(4-1)}{SS_E/(16-4)} \sim F_{(4-1),(16-4)} = F_{3,12}$$

We see that if H_0 is correct, we can expect an $F_{0 \text{ obs}}$ of about 1. If H_0 is wrong, we can expect a big value of $F_{0 \text{ obs}}$.

Minitab gives us:

One-way Analysis of Variance Analysis of Variance for Data

Source	DF	SS	MS	F	Р		
М	3	72,0	24,0	1,58	0,245		
Error	12	182,0	15,2				
Total	15	254,0					
				Individua	1 95% C	Is For Me	an
				Based on Pooled StDev			
Level	Ν	Mean	StDev	-+	+	+	
1	4	72,000	2,944	(*)	
2	4	75,000	3,162	(*)
3	4	77,000	4,243		(*-)
4	4	72,000	4,899	(*)	
				-+	+	+	
Pooled St	tDev =	3,894	6	8,0 7	2,0	76,0	80,0

Here we have that:

$$F_{0 \text{ obs}} = \frac{SS_A/3}{SS_E/12} = \frac{24.0}{15.2} = 1.58$$

the p-value:

$$p = P(F_{3,12} > F_{0 \text{ obs}}) = P(F_{3,12} > 1.58) = 0.245$$

): p is larger than any reasonable significance level α , which means we can not reject H_0 , and claim that there is a difference between the machines.

b) Now we assume that skills of the workers have an influence. Model:

$$X_{ij} = \mu + \alpha_j + \beta_i + \epsilon_{ij}, \quad \sum_j \alpha_j = \sum_i \beta_i = 0$$

We have:

- X_{ij} : The number of produced units with machine j and worker i.
- ϵ_{ij} assumed independent and $\sim N(0, \sigma^2) \ \forall i, j.$
- α_j is a factor which is special for machine j.
- β_i is a factor which is special for worker *i*.
- μ : "average effect"

We have the same hypothesis test as in **a**): H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$ against H_1 : at least one is different.

We split the total variation into three sums of squares

$$SS_{\text{tot}} = SS_{\text{mask}} + SS_{\text{arb}} + SS_{E}$$

$$(1)$$

$$\sum_{j=1}^{4} \sum_{i=1}^{4} (X_{ij} - \bar{X}_{..})^{2} = 4 \sum_{j=1}^{4} (\bar{X}_{.j} - \bar{X}_{..})^{2} + \sum_{i=1}^{4} (\bar{X}_{i.} - \bar{X}_{..})^{2}$$

$$+ \sum_{j=1}^{4} \sum_{i=1}^{4} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^{2}$$

The same type of argument as in **a**) tells us that we can expect a big value of $F_{0 \text{ obs}}$ if H_0 is wrong.

Here

$$F = \frac{SS_{\text{mask}}/(4-1)}{SS_E/((4-1)(4-1))} \sim F_{4-1,(4-1)(4-1)} = F_{3,9}$$

Minitab gives:

Two-way Analysis of Variance

Analysis of	Varian	ce for Data			
Source	DF	SS	MS	F	Р
Α	3	160,00	53,33	21,82	0,000
М	3	72,00	24,00	9,82	0,003
Error	9	22,00	2,44		
Total	15	254,00			

And we see that

$$F_{0 \text{ obs}} = \frac{72.0/3}{22.0/9} = 9.82,$$

and this gives *p*-value: $p = P(F_{3,9} > 9.82) = 0.003$.

): We have a small p and we reject H_0 .

c) Expected number of produced units from machine M_2 :

$$\mu_{\cdot 2} = E(X_{\cdot 2}) = \mu + \alpha_2$$

Estimator: $\hat{\mu}_{\cdot 2} = \frac{1}{4} \sum_{i=1}^{4} X_{i2}$. This gives the point estimate: $\hat{\mu}_{\cdot 2} = \frac{1}{4} (77 + 71 + 78 + 74) = 75$. We have:

$$E(\hat{\mu}_{\cdot 2}) = \frac{1}{4} \sum_{i=1}^{4} E(X_{i2}) = \frac{1}{4} \sum_{i=1}^{4} (\mu + \alpha_2 + \beta_i) = \mu + \alpha_2 + \frac{1}{4} \sum_{i=1}^{4} \beta_i = \mu + \alpha_2$$

and

$$\operatorname{Var}(\hat{\mu}_{2}) = E[((\hat{\mu}_{2}) - E(\hat{\mu}_{2}))^{2}] = E\left[\left(\frac{1}{4}\sum_{i=1}^{4}(Y_{i2} - E(Y_{i2}))\right)^{2}\right]$$
$$= E\left[\left(\frac{1}{4}\sum_{i=1}^{4}\epsilon_{i2}\right)^{2}\right] = \frac{1}{16}\sum_{i=1}^{4}E(\epsilon_{i2})^{2} = \left(\frac{1}{16}\right)^{2}\sum_{i=1}^{4}\operatorname{Var}(\epsilon_{i2})$$
$$= \frac{1}{4}\sigma^{2}$$

Therefore we get $\hat{\mu}_{\cdot 2} \sim N(\mu + \alpha_2, \frac{1}{4}\sigma^2) \Rightarrow \frac{\hat{\mu}_{\cdot 2} - (\mu + \alpha_2)}{\sigma/2} \sim N(0, 1).$ σ^2 is estimated in **b**) as $S^2 = \frac{1}{9}SS_E$. Now we have:

$$\frac{\hat{\mu}_{\cdot 2} - (\mu + \alpha_2)}{S/2} \sim T_9$$

(same number of degrees of freedom as SS_E).

 $(1 - \alpha) \cdot 100 \%$ confidence interval:

$$\begin{split} P\left(-t_{\alpha/2,9} \leqslant \frac{\hat{\mu}_{\cdot 2} - (\mu + \alpha_2)}{S/2} \leqslant t_{\alpha/2,9}\right) &= 1 - \alpha \\ & \updownarrow \\ P(\hat{\mu}_{\cdot 2} - t_{\alpha/2,9}S/2 \leqslant \mu + \alpha_2 \leqslant \hat{\mu}_{\cdot 2} + t_{\alpha/2,9}S/2) &= 1 - \alpha \end{split}$$

With numbers: $\hat{\mu}_{.2} = 75$, $\alpha = 0.1$, $t_{0.05,4} = 1.83$, $S^2 = 2.444$.): 90 % confidence interval $\mu + \alpha_2$: [73.6, 76.4].

Problem 4

Assume Y_{ijk} to be independent and normally distributed ~ $N(\mu_{ij}, \sigma^2)$.

- *i* indicates cottontype, i = 1, 2, 3.
- j indicates silktype, j = 1, 2, 3, 4.
- k indicates trial. k with combination ij, k = 1, 2.

$$E(Y_{ijk}) = \mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}, \sum_i \alpha_i = \sum_j \beta_j = \sum_i \gamma_{ij} = \sum_j \gamma_{ij} = 0.$$

a)

- μ is an "average effect".
- α_i is a factor that is special for cottontype *i*.
- β_j is a factor that is special for silktype j.
- γ_{ij} is a factor that is special for the interaction between cottontype *i* and silktype *j*.

Estimators for these four parameters: This is done using maximum likelihood here (optional), can also be done based on intuition.

Intuition will give us that:

- μ can be estimated using the overall mean, $\hat{\mu} = \bar{Y}_{\dots}$,
- α_i by the difference between the mean for cotton group *i* and the overall mean, $\hat{\alpha}_i = \bar{Y}_{i\cdots} \bar{Y}_{\cdots}$,
- β_j by the difference between the mean for silk group j, $\hat{\beta}_j = \bar{Y}_{.j.} \bar{Y}_{...}$,
- γ_{ij} by the difference between the mean for the combined cotton and slik group and the mean over cotton, silk and the overall mean, $\hat{\gamma}_{ij} = \bar{Y}_{ij} \bar{Y}_{i..} \bar{Y}_{.j.} + \bar{Y}_{...}$

The following is optional, but should be possible to follow: Probability density of one Y_{ijk} :

$$f_Y(Y_{ijk}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(Y_{ijk} - \mu_{ij})^2}$$

Find the joint density:

$$l(\mu, \alpha_i, \beta_j, \gamma_{ij}, \sigma^2 | Y_{ijk}) = \prod_{i,j,k} f_Y(Y_{ijk})$$
$$= \left[\frac{1}{\sqrt{2\pi\sigma}}\right]^{3+4+2} e^{-\frac{1}{2\sigma^2}\sum_i\sum_j\sum_k(Y_{ijk}-\mu-\alpha_i-\beta_j-\gamma_{ij})^2}$$

ln is a strictly increasing function, and $\ln l$ therefore has the same maximum points as l.

$$L = \ln l = 9 \cdot \ln \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij})^2$$

Maximizing L wrt. the unknown parameters:

$$\begin{split} \frac{\partial L}{\partial \mu} &= -\frac{1}{2\sigma^2} 2 \sum_i \sum_j \sum_k (Y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij})(-1) \\ &= \frac{1}{2\sigma^2} 2 \sum_i \sum_j \sum_k (Y_{ijk} - \mu) \\ \frac{\partial L}{\partial \mu} &= 0 \\ &\Rightarrow \sum_i \sum_j \sum_k (Y_{ijk} - \hat{\mu}) = 0 \\ &\Rightarrow \hat{\mu} = \bar{Y}... \end{split}$$

$$\begin{split} \frac{\partial L}{\partial \alpha_i} &= \frac{1}{\sigma^2} \sum_j \sum_k (Y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij}) \\ &= \frac{1}{\sigma^2} \sum_j \sum_k (Y_{ijk} - \mu - \alpha_i) \\ \frac{\partial L}{\partial \alpha_i} &= 0 \\ &\Rightarrow \frac{1}{\sigma^2} \sum_j \sum_k (Y_{ijk} - \hat{\mu} - \hat{\alpha}_i) = 0 \\ &\Rightarrow \hat{\alpha}_i = \bar{Y}_{i\cdots} - \hat{\mu} = \bar{Y}_{i\cdots} - \bar{Y}_{\cdots} \end{split}$$

$$\frac{\partial L}{\partial \beta_j} = 0 \Rightarrow \hat{\beta}_j = \bar{Y}_{.j.} - \hat{\mu} = \bar{Y}_{.j.} - \bar{Y}_{...}$$
(5)

$$\begin{split} \frac{\partial L}{\partial \gamma_{ij}} &= \frac{1}{\sigma^2} \sum_k (Y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij}) \\ \frac{\partial L}{\partial \gamma_{ij}} &= 0 \\ \Rightarrow \sum_k Y_{ijk} - k\hat{\mu} - k\hat{\alpha}_i - k\hat{\beta}_j - k\hat{\gamma}_{ij} = 0 \\ \Rightarrow \hat{\gamma}_{ij} &= \frac{1}{k} \sum_k Y_{ijk} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j \\ &= \bar{Y}_{ij.} - \bar{Y}_{...} - (\bar{Y}_{i..} - \bar{Y}_{...}) - (\bar{Y}_{.j.} - \bar{Y}_{...}) \\ &= \bar{Y}_{ij.} - \bar{Y}_{i...} - \bar{Y}_{.j.} + \bar{Y}_{...} \end{split}$$

(maksimum because $\frac{\partial^2 L}{\partial \gamma_{ij}^2} < 0.)$

Kilde	DF (DF)	Sum of squares (SS)
Rows (A)	a-1	$bn \sum_i (\bar{X}_{i\cdots} - \bar{X}_{\cdots})^2$
Columns (B)	b - 1	$an \sum_{j} (\bar{X}_{.j.} - \bar{X}_{})^2$
Interaction (AB)	(a-1)(b-1)	$\frac{1}{n\sum_{i}\sum_{j}(\bar{X}_{ij\cdot}-\bar{X}_{i\cdot\cdot}-\bar{X}_{\cdotj\cdot}+\bar{X}_{\cdot\cdot})^2}$
Error	ab(n-1)	$\sum_i \sum_j \sum_k (X_{ijk} - \bar{X}_{ij.})^2$
Total	abn-1	$\sum_i \sum_j \sum_k (X_{ijk} - \bar{X}_{})^2$

b) Analysis of variance table:

Here:

- a =number of cottontypes = 3.
- b =number of silktypes = 4.
- n = number of replicates for each combination(ij) = 2.
- $X_{ijk} = k$ -th observation with cotton type i and silktype j.
- \bar{X}_{ij} = average value of the *n* observations in "cell (i, j)".
- $\bar{X}_{i..}$ = average value of the $b \cdot n$ observations of cotton type i.
- $\bar{X}_{.j.}$ = average value of the $a \cdot n$ observations of silk type j.
- \bar{X}_{\dots} = average value of all observations.

In general we have that

$$MS = SS/DF = \frac{\text{sum of squares}}{\text{DF}}$$

Hypothesis test:

- H_0 : No interaction
- H_1 : Interaction

Under H_0

$$F = \frac{MS_{\text{interaction}}}{MS_{\text{error}}} \sim F_{6,12}.$$

From the Minitab results in c) we have a *p*-value: $P(F_{6,12} > 2.31) = 0.103$.

): We use $\alpha = 0.05$ and can not reject H_0 . We conclude that there is not evidence to believe that an interaction term is present.

c) Hypothesis test for A: H_0 : A has no effect, i.e. $\alpha_1 = \alpha_2 = \alpha_3 = 0$ H_1 : A has effect Under H_0

$$F_{\rm obs} = \frac{MS_A}{MS_{\rm error}} = \frac{SS_A/2}{SS_{\rm error}/12} \sim F_{2,12}$$

Minitab gives:

Two-way Analysis of Variance Analysis of Variance for Response

Source	DF	SS	MS	F	Р
Α	2	434,2	217,1	15,70	0,000
В	3	200,3	66,8	4,83	0,020
Interaction	6	191,4	31,9	2,31	0,103
Error	12	166,0	13,8		
Total	23	992,0			

p-verdi:

$$p = P(F_{2,12} > F_{obs}) = P(F_{2,12} > 15.70) = 0.000$$

): We reject H_0 and claim that A har effect.

Hypothesis test for B:

 $H_0:$ B has no effekt, i.e. $\beta_1 = \beta_2 = \beta_3 = 0$ $H_1:$ B has effect

Just like above we get:

$$F_{\rm obs} = \frac{MS_B}{MS_{\rm error}} \sim F_{3,12}$$

p-verdi:

$$p = P(F_{3,12} > F_{obs}) = P(F_{3,12} > 4.83) = 0.02$$

): We use $\alpha = 0.05$ and we can therefore reject H_0 and say that B has effect. Conclusion: Both cotton type and silk type influence the quality.