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ied. The J-characteristics play an instrumental role in the development of general-

ized resolution and minimum aberration criteria for two-level designs. The concept

of J-characteristics is naturally generalized to four-level designs via quaternary code,

which mapping the four-level designs to two-level designs. The relationship between

J-characteristics of four-level designs and J-characteristics of corresponding effective

two-level sub-designs is built. The generalized resolution, confounding frequency vector

and B-vector of four-level design are respectively defined based on the J-characteristics

and their upper bounds, and minimum G-aberration and minimum G2-aberration cri-

teria of four-level design are proposed, which are useful to assess the ‘googness’ of

four-level designs.

We believe that our findings are of interest to the readers because we report here an

impressive and novel direction to assess multi-level designs. The results in this paper

are very important since they introduce a new direction to the theory of multi-level

designs.

I appreciate for an acknowledgement receipt by mail or email. Thank you!

Sincerely yours,

Dr. Zujun Ou

Department of Statistics

College of Mathematics and Statistics

1

Cover Letter



Jishou University

Jishou, Hunan Province, 416000 China

Email: ozj9325@mail.ccnu.edu.cn

2



Theory of J-characteristics of four-level designs

under quaternary codes

Xiangyu Fang1,2, Hongyi Li2, Zujun Ou2,∗

1Hunan Institute of Traffic Engineering, Hengyang 421001, China

2College of Mathematics and Statistics, Jishou University, Jishou 416000, China

Abstract

The J-characteristics play an instrumental role in the development of generalized reso-

lution and minimum aberration criteria for two-level designs. In this paper, the concept

of J-characteristics is naturally generalized to four-level designs via quaternary codes,

which maps the four-level designs to two-level designs. Based on the relationship be-

tween the minimum G2-aberration criterion of two-level design and the generalized min-

imum aberration criterion of its projection designs, the properties of J-characteristics of

four-level designs are explored. The relationship between J-characteristics of four-level

design and J-characteristics of corresponding effective two-level sub-designs is built.

The generalized resolution, confounding frequency vector and B-vector of four-level

design are respectively defined based on the J-characteristics and their upper bounds,

and minimum G-aberration and minimum G2-aberration criteria of four-level design

are proposed, which are useful to assess the goodness of four-level designs.

MSC: 62K15, 62K99

Key words: Four-level designs; J-characteristics; Minimum G-aberration; Minimum

G2-aberration; Quaternary code.

1 Introduction

One of the important tasks in design of experiment is to find good designs and to ana-

lyze experimental data effectively, the general problem considered in this paper is how

to select the ‘good’ fractional factorial designs. There are several optimality criteria for

∗Corresponding author. E-mail: ozj9325@mail.ccnu.edu.cn (Z. J. Ou).
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choosing good designs. The first is the maximum resolution criterion proposed by Box

and Hunter (1961). This criterion chooses the good designs with maximum resolution,

but does not distinguish among them. In situations where we have little or no knowl-

edge about the effects that are potentially significant, the minimum aberration criterion

(Fries and Hunter, 1980) has been frequently used in the selection of regular fractional

factorial designs. Based on a set of J-characteristics values, Tang and Deng (1999) and

Deng and Tang (1999) successively proposed generalized resolution, minimum aberra-

tion and related criteria to compare nonregular two-level designs. Subsequently, the

extension version of minimum aberration named as generalized minimum aberration

criterion for comparing symmetrical or asymmetrical fractional factorial designs can

be found in Xu and Wu (2001) based on ANOVA model.

Obviously, the J-characteristics play a key role in the development of general-

ized resolution, minimum aberration criteria and their extensions for two-level designs.

Furhtermore, the J-characteristics are very useful to explore the properties and con-

struction of two-level designs, some related papers have been published after Tang and

Deng (1999) and Deng and Tang (1999). Tang (2001) showed that a factorial design

is uniquely determined by its J-characteristics based on the relationship between the

frequency distribution of design points and its J-characteristics, which is similar to a

regular factorial design uniquely determined by its defining relation. Deng and Tang

(2002) classified and ranked two-level designs that were based on Hadamard matrices

through J-characteristics and its related minimum aberration criteria. At the same

time, a theoretical result on J-characteristics was proposed to facilitate the calcula-

tion. Evangelaras and Peveretos (2017) proposed an effective method to arrange the

runs of a two-level orthogonal table into two and four blocks based on the properties

of J-characteristics of orthogonal tables proposed in Deng and Tang (2002). Based on

the theory of J-characteristics of two-level designs, Tang and Deng (2003) proposed

a method to construct generalized minimum aberration designs of 3, 4 and 5 factors,

for any run size n that is a multiple of 4. Recently, Shi and Tang (2021) undertook

a comprehensive study on the construction of nonregular two-level designs with maxi-

mum generalized resolutions through J-characteristics and their lower bounds. Wang

and Mee (2021) investigated the theoretical results of two-level parallel flats designs

by confounding frequency vectors (Deng and Tang, 1999), which are originated from

J-characteristics.

Developing a J-characteristics theory of multi-level designs is motivated by the

desire of application of multi-level designs that have widely appeared in the literature.

There are rarely obvious extensions of J-characteristics theory for designs with more

than two levels. Bingham et al. (2009) defined the concept of J-characteristics of
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multi-level designs and introduced a method for constructing a rich class of orthogonal

and nearly orthogonal designs that were suitable for use in computer experiments.

Therefore, it is of theoretical and practical interest to further develop a general theory

of J-characteristics of multi-level designs. We will focus our discussion on four-level

fractional factorial designs by use of quaternary codes.

Researchers show that designs based on quaternary codes often have high efficien-

cy, and some relevant introductions of quaternary codes are given in MacWilliams and

Sloane (1977) and Wan (1997). The construction of two-level designs based on qua-

ternary codes was firstly studied in Xu and Wong (2007). Many nonregular designs

constructed by this construction method had better statistical properties than regular

designs of the same size in terms of resolution, aberration and projectivity. Phoa and

Xu (2009) discussed the construction and the properties of quarter-fraction nonregular

designs based on quaternary codes. Soon afterwards, Zhang et al. (2011) generalized

the work of Phoa and Xu (2009) to two-level (1/8)th- and (1/16)th-fractions quater-

nary codes designs with a trigonometric representation, and Phoa (2012) developed

the basic theorems on structure and properties of such designs. Evangelaras (2015)

explored the problem of constructing two-level Minimum Generalized Aberration or-

thogonal arrays with strength t, n runs and q > t columns, using a method that

employed the J-characteristics of a two-level design. Besides, uniformity of factorial

designs was studied via quaternary codes, and recent results in this direction included

Chatterjee et al. (2017), Hu et al. (2019), Hu et al. (2020), and Li and Qin (2020).

In this paper, based on quaternary codes, four-level designs are transformed to

two-level designs, the concept of J-characteristics is naturally generalized to four-level

designs. Through the set of J-characteristics, some theoretical results of four-level

design are investigated from the viewpoint of projection. Moreover, the generalized

resolution, confounding frequency vector and B-vector of four-level design are respec-

tively defined based on the J-characteristics and their upper bounds, and minimum

G-aberration and minimum G2-aberration criteria of four-level design are proposed to

assess the goodness of four-level designs.

The paper is organized as follows. In Section 2, some notations and prelim-

inaries are introduced. Section 3 discusses the connection between minimum G2-

aberration and generalized minimum aberration for two-level designs. The definition

of J-characteristics of four-level designs is given in Section 4, and some properties of

J-characteristics are also discussed in this section. The generalized resolution, con-

founding frequency vector and B-vector of four-level design are respectively defined in

Section 5, and minimum G-aberration and minimum G2-aberration criteria are pro-

posed to assess the goodness of four-level designs. Numerical examples show that

3



these criteria are very effective for selecting better four-level designs. Finally, some

concluding remarks of this paper are given in Section 6.

2 Notations and preliminaries

A symmetric U-type design with n runs and m factors of q levels, denoted by d(n; qm),

is an n × m matrix, which takes entries equally often in each column from {−(q −

1)/2, . . . ,−1, 0, 1, . . . , (q−1)/2} for odd q or from {−q+1,−q+3, . . . ,−1, 1, . . . , q−1}

for even q. Let D(n; qm) be the set of all symmetric U-type designs d(n; qm). For any

design d = (di,j)n×m ∈ D(n; qm), let d = (d1, . . . , dm), where dj = (d1,j, . . . , dn,j)
T is

the j-th column of d, j = 1, . . . , m. Denote Zm = {1, . . . , m}. For any subset u ⊆ Zm,

let du be the projection design of design d on set u and |u| be the cardinality of set u.

For two-level design d ∈ D(n; 2m), the definition of J-characteristics of design d is

defined in Tang (2001) as follows.

Definition 1 (Tang, 2001) For any two-level design d ∈ D(n; 2m), du is the pro-

jection design of design d on set u ⊆ Zm, all possible Ju(du) values are called the

J-characteristics of design d, where

Ju(du) =

n
∑

i=1

∏

j∈u

di,j. (1)

The above definition appears in Tang (2001) where the unique determinacy of J-

characteristics to a factorial design is shown, and using this conclusion, projection

justification of minimum G2-aberration proposed in Tang and Deng (1999) is estab-

lished. The above definition of J-characteristics is slightly different from original one

given in Tang and Deng (1999), which is the absolute value of Ju(du) in equation (1),

i.e., |Ju(du)|. Based on the J-characteristics of design d ∈ D(n; 2m), the B-vector is

defined in Tang and Deng (1999) as follows, which aims to capture the orthogonality

of design d. The minimum G2-aberration criterion is to sequentially minimize Bk(d)

in Definition 2 for k = 2, 3, . . . , m.

Definition 2 For any two-level design d ∈ D(n; 2m) and k = 2, 3, . . . , m, define Bk(d) =
∑

|u|=k(Ju(du)/n)
2, the vector (B2(d), . . . , Bm(d)) is called the B-vector of design d.

We now give the notations and preliminaries of distance distribution and generalized

word-length pattern of design d ∈ D(n; qm).
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Definition 3 Suppose d ∈ D(n; qm), hij(d) is the Hamming distance between i-th and

j-th rows of design d, that is, the number of positions where they differ, i, j = 1, . . . , n.

The vector (E0(d), . . . , Em(d)) is called the distance distribution of design d, where

Ek(d) = n−1 |{(i, j) : hij(d) = k, i, j = 1, 2, . . . , n}| , k = 0, 1, . . . , m.

For any design d ∈ D(n; qm), the MacWilliams transforms of the distance distribu-

tion are defined as

Ai(d) =
1

n

m
∑

j=0

Pi(j;m, q)Ej(d), i = 0, 1, . . . , m,

where Pi(j;m, q) =
∑i

r=0(−1)r(q − 1)i−r
(

j

r

)(

m−j

i−r

)

is the Krawtchouk polynomial. The

vector (A0(d), . . . , Am(d)) is called the generalized word-length pattern of design d

in Xu and Wu (2001). The generalized minimum aberration criterion for selecting

optimal design in D(n; qm) is to sequentially minimize the generalized word-length

pattern (A0(d), . . . , Am(d)) of design d.

By the orthogonality of the Krawtchouk polynomials, it is easy to show that

Ej(d) = nq−m

m
∑

i=0

Pj(i;m, q)Ai(d). (2)

In order to define the J-characteristics of four-level design d ∈ D(n; 4m) and ex-

plore its properties, the replacement rule φ and group are respectively introduced in

Definition 4 and Definition 5, which will be used in the rest of this paper.

Definition 4 For any design d = (d1, . . . , dm) ∈ D(n; 4m), the replacement rule φ is a

rule that replaces a quaternary column of d via the following mapping by two binary

columns,

φ : −3 → (−1,−1), − 1 → (−1, 1), 1 → (1,−1), 3 → (1, 1),

the corresponding two-level design d′ = (d′1, d
′
2, . . . , d

′
2m−1, d

′
2m) ∈ D(n; 22m) obtained

by φ is called the mapped design of d, and the j-th pair of columns (d′2j−1, d
′
2j) is called

the mapped columns of the j-th column dj, j = 1, . . . , m.

Definition 5 Suppose G is a non-void set, and there is an algebraic operation called

multiplication on G. For any two elements a, b ∈ G, the result c of the operation

becomes the product of a and b, which is denoted as c = ab. G is said to be a group,

if it still satisfies the following properties:

5



(i) G is closed for this multiplication.

(ii) If a, b, c ∈ G then (ab)c = a(bc).

(iii) ∀a ∈ G, ∃ e ∈ G such that ea = ae = a, e is the identity of G.

(iv) ∀a ∈ G, ∃ b ∈ G such that ab = ba = e, b becomes an inverse of a.

3 Connection between minimum G2-aberration and

generalized minimum aberration

In this section, the connection between minimum G2-aberration and generalized mini-

mum aberration of design d ∈ D(n; 2m) is built, which is useful for exploration of the

theory of J-characteristic of four-level design.

For any design d ∈ D(n; 2m) and u ⊆ Zm, the connection between J-characteristic

Ju(du) of design d and distance distribution of design du is given in Theorem 1 as

follows.

Theorem 1 For any design d ∈ D(n; 2m) and u ⊆ Zm, let du be the projection design

of design d on set u ⊆ Zm, (E0(du), . . . , E|u|(du)) be the distance distribution of design

du, then

J2
u(du) = n

|u|
∑

j=0

(−1)jEj(du). (3)

Proof. The design du could be rearranged into two groups by row, such that each

level combination contains even entries of −1 in the first group , and each level

combination contains odd entries of −1 in the second group. Suppose there are x

level combinations in the first group and y level combinations in the second group.

It is not hard to see that any row pair whose Hamming distance is odd only oc-

curs between two groups of du, and any row pair whose Hamming distance is even

only occurs within two groups of du. Since there are 2xy row pairs between two

groups, which leads to n
∑

j is odd, 0≤j≤|u|Ej(du) = 2xy. Similarly, since there are

2
((

x

2

)

+
(

y

2

))

+ (x + y) = x2 + y2 row pairs in total within two groups, which leads

to n
∑

j is even, 0≤j≤|u|Ej(du) = x2 + y2. From Definition 1, it is easy to show that

Ju(du) = x− y, thus

J2
u(du) = x2 + y2 − 2xy

= n
∑

j is even, 0≤j≤|u|

Ej(du)− n
∑

j is odd, 0≤j≤|u|

Ej(du)
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= n

|u|
∑

j=0

(−1)jEj(du),

which completes the proof.

For any design d ∈ D(n; 2m) and u ⊆ Zm, the connection between minimum G2-

aberration of design d and generalized minimum aberration of its projection sub-design

du is given in Theorem 2 as follows.

Theorem 2 For any design d ∈ D(n; 2m), let (B2(d), . . . , Bm(d)) be the B-vector of

design d, (A0(du), . . . , Ak(du)) be the generalized word-length pattern of projection

design du on u ⊆ Zm with |u| = k, k = 2, . . . , m, then

Bk(d) =
1

2k

∑

|u|=k

k
∑

j=0

(−1)j
k

∑

i=0

Pj(i; k, 2)Ai(du). (4)

Proof. By Definition 2 and equation (3) in Theorem 1,

Bk(d) =
∑

|u|=k

J2
u(du)

n2

=
1

n

∑

|u|=k

k
∑

j=0

(−1)jEj(du)

=
1

2k

∑

|u|=k

k
∑

j=0

(−1)j
k

∑

i=0

Pj(i; k, 2)Ai(du),

which completes the proof.

An example is given to illustrate Theorem 2 in the following.

Example 1 Consider the design d̃1 ∈ D(8; 25) given below.

d̃1 =













1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1













T

.

For k = 2, 3, 4, the generalized word-length patterns of all k-dimensional projection
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designs of design d̃1 are respectively sorted in the following matrices by row,





1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0





T

,









1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0









T

,













1 1 1 1 1
0 0 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 0 0 0













T

.

When k = 5, the 5-dimensional projection design of design d̃1 is itself, and the

generalized word-length pattern of design d̃1 is (1, 0, 1, 1, 0, 1).

From Theorem 2, the entries of B-vector are respectively obtained as B2(d̃1) =

1, B3(d̃1) = 1, B4(d̃1) = 0, B5(d̃1) = 1, which is the same as the ones of B-vector

obtained from Definition 2 by the J-characteristics of d̃1.

4 J-characteristics of four-level design

In this section, the definition of J-characteristics of four-level design d ∈ D(n; 4m) is

proposed based on its mapped design d′ as given in Definition 4, which aims to depict

the structure and character of four-level design d from the angle of its mapped design

d′. Some properties of J-characteristics of four-level designs are investigated.

For any design d = (d1, . . . , dm) ∈ D(n; 4m), let d′ = (d′1, d
′
2, . . . , d

′
2m−1, d

′
2m) ∈

D(n; 22m) be the mapped design of d. Due to the fact (−3,−1, 1, 3)T = 2(−1,−1, 1, 1)T+

(−1, 1,−1, 1)T , it can be easily seen that the mapped columns (d′2j−1, d
′
2j) of the j-th

column dj satisfies dj = 2d′2j−1 + d′2j, j = 1, . . . , m. Therefore, the J-characteristics of

four-level design d ∈ D(n; 4m) are naturally defined as follows, which is analogous to

the J-characteristics of two-level design d ∈ D(n; 2m) in Definition 1.

Definition 6 Suppose d ∈ D(n; 4m) and d′ = (d′i,j)n×2m is the mapped design of design

d based on replacement rule φ. For i = 1, . . . , n, j = 1, . . . , m, define d′i,2j−1 ⊛ d′i,2j =

2d′i,2j−1 + d′i,2j. Let du be the projection design of design d on set u ⊆ Zm, all possible

Ju(du) values are called the J-characteristics of design d, where

Ju(du) =

n
∑

i=1

∏

j∈u

(d′i,2j−1 ⊛ d′i,2j). (5)
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For any design d ∈ D(n; 4m), let d′ = (d′i,j)n×2m be the mapped design of design d

based on replacement rule φ. For any u = {j1, . . . , j|u|} ⊆ Zm, let du = (dj1, . . . , dj|u|)

be the projection design of design d on set u and d′u = (d′2j1−1, d
′
2j1

, . . . , d′2j|u|−1, d
′
2j|u|

) ∈

D(n; 22|u|) be the mapped design of projection design du based on replacement rule φ,

where dji is the ji-th column of design d and (d′2ji−1, d
′
2ji
) is the mapped columns of dji

based on replacement rule φ, i = 1, . . . , |u|. The 2|u| columns of the mapped design

d′u can be equally divided into |u| groups by column and each group consists of the

mapped columns (d′2ji−1, d
′
2ji
) of the ji-th column dji of design d, that is, the |u| groups

are respectively (d′2j1−1, d
′
2j1), . . . , (d

′
2j|u|−1, d

′
2j|u|

), i = 1, . . . , |u|. It is easy to show that

the two columns in any group are orthogonal.

For u = {j1, . . . , j|u|} ⊆ Zm, let Su = {(2ji − 1, 2ji) : i = 1, . . . , |u|} be the col-

umn index set of all groups in design d′u. Define Wu = {Lk = (l1, . . . , l|u|) : li ∈

{2ji − 1, 2ji}, i = 1, . . . , |u|} with element Lk = (l1, . . . , l|u|) arranged in the lexi-

cographic order, k = 1, . . . , 2|u|. The sequence of the projection designs of d′u on

Lk = (l1, . . . , l|u|) is called the effective sub-design sequence of design d′u, denoted by

s1, . . . , s2|u| respectively, which can be obtained by Algorithm 1 in the following. For

the effective sub-design sequence si = (sijk)n×|u| of d
′
u, define the n× 1 vector sequence

ci = (
∏|u|

k=1 s
i
1k, . . . ,

∏|u|
k=1 s

i
nk)

T , i = 1, . . . , 2|u|. Define

f(i) =











2|u|, i =
(

|u|
|u|

)

,

2p,
∑|u|

l=p+1

(

|u|
l

)

< i ≤
∑|u|

l=p

(

|u|
l

)

, p = 1, . . . , |u| − 1,

20, i = 2|u|.

(6)

Based on the above notations, for any design d ∈ D(n; 4m) and u ⊆ Zm, the

relationship between J-characteristics Ju(du) of design d and J-characteristics of the

effective sub-designs s1, . . . , s2|u| of design d′u is given in Theorem 3 as follows.

Theorem 3 For any design d ∈ D(n; 4m) and u ⊆ Zm, let du be the projection design

of design d on set u, d′u = (d′i,j)n×2|u| be the mapped design of design du based on

replacement rule φ and s1, . . . , s2|u| be the effective sub-design sequence of design d′u,

then

J2
u(du) =

2|u|
∑

i,j=1

f(i)f(j)JZ|u|
(si)JZ|u|

(sj). (7)

Proof. For simplicity, denote the column vector cj = (c1,j, . . . , cn,j)
T and let J1(cj) be

the J-characteristic of cj for j = 1, . . . , 2|u|. It is not hard to see that JZ|u|
(sj) = J1(cj).
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Algorithm 1: Generation algorithm of effective sub-designs of design d′u
Input: a design d ∈ D(n; 4m) and u ⊆ Zm

Output: the effective sub-designs of design d′u
1 Initialization: oddVec is the vector of odd column index, evenVec is the vector of
even column index.

2 for i=0 to |u| do
3 Select i elements from vector evenVec in lexicographic order, which are

stored in matrix evenMat by row.
4 Obtain matrix index, which consists of the positions of the elements in

matrix evenMat in vector evenVec.
5 temp = oddVec
6 for j=1 to number of rows of matrix evenMat do
7 temp[index[j, ]] = evenMat[j, ]
8 Output the sub-design corresponding to vector temp.
9 temp = oddVec

10 end

11 end

From Definition 6,

J2
u(du) =

[

n
∑

i=1

∏

j∈u

(d′i,2j−1 ⊛ d′i,2j)

]2

=

[

n
∑

i=1

∏

j∈u

(2d′i,2j−1 + d′i,2j)

]2

=
{

2|u|(c1,1 + · · ·+ cn,1)

+2|u|−1

[

(c1,2 + · · ·+ cn,2) + · · ·+

(

c
1,
∑|u|

l=|u|−1
(|u|l )

+ · · ·+ c
n,
∑|u|

l=|u|−1
(|u|l )

)]

+ · · ·+ 20(c1,2|u| + · · ·+ cn,2|u|)
}2

=
[

f(1)J1(c1) + f(2)J1(c2) + · · ·+ f(2|u|)J1(c2|u|)
]2

=

2|u|
∑

i,j=1

f(i)f(j)J1(ci)J1(cj)

=

2|u|
∑

i,j=1

f(i)f(j)JZ|u|
(si)JZ|u|

(sj),

which completes the proof.

For any design d ∈ D(n; 4m) and u ⊆ Zm, the relationship between J-characteristic
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Ju(du) of design d and the distance distributions of the effective sub-design sequence

of design d′u is given in Theorem 4 as follows.

Theorem 4 For any design d ∈ D(n; 4m) and u ⊆ Zm, let du be the projection design

of design d on set u, d′u = (d′i,j)n×2|u| be the mapped design of design du based on

replacement rule φ, s1, . . . , s2|u| be the effective sub-design sequence of design d′u and

(E0(si), . . . , E|u|(si)) be the distance distribution of di, i = 1, . . . , 2|u|, then

J2
u(du) = n

2|u|
∑

i,j=1

f(i)f(j)

√

√

√

√

|u|
∑

k,l=0

(−1)k+lEk(si)El(sj). (8)

Proof. From Theorem 1 and Theorem 3,

J2
u(du) =

2|u|
∑

i,j=1

f(i)f(j)JZ|u|
(si)JZ|u|

(sj)

= n
2|u|
∑

i,j=1

f(i)f(j)

√

√

√

√

|u|
∑

k=0

(−1)kEk(si)

|u|
∑

l=0

(−1)lEl(sj)

= n
2|u|
∑

i,j=1

f(i)f(j)

√

√

√

√

|u|
∑

k,l=0

(−1)k+lEk(si)El(sj),

which completes the proof.

An example is given to illustrate Theorem 3 and Theorem 4 in the following.

Example 2 Consider the four-level design d̃2 ∈ D(8; 45) given below.

d̃2 =













−3 1 3 −1 −1 −3 1 3
3 −3 −1 1 −3 −1 1 3

−1 1 −3 −3 −1 3 3 1
1 −3 1 −3 3 −1 3 −1

−3 −3 −1 1 3 1 −1 3













T

.

The two-level mapped design d̃′2 ∈ D(8; 210) of d̃2 based on replacement rule φ is
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given as follows

d̃′2 =

























−1 −1 1 1 −1 1 1 −1 −1 −1
1 −1 −1 −1 1 −1 −1 −1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 1

−1 1 1 −1 −1 −1 −1 −1 1 −1
−1 1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 1 1 1 1 −1 1
1 1 1 1 1 −1 −1 1 1 1

























.

To save space, only the numerical results of the case u = Z5 are given. From Def-

inition 6, the J-characteristic JZ5
(d̃2) = 144. From Definition 1, the J-characteristics

of all designs in the effective sub-design sequence of design d̃′2 are obtained, which are

listed in the following vector in order,

(−8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 8,−8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−8, 0, 8,−8, 0, 0).

Based on the above J-characteristics and Theorem 3, J2
Z5
(d̃2) = 20736.

On the other hand, the distance distributions of all designs in the effective sub-

design sequence of design d̃′2 are obtained from Definition 3, which are stored in the

following 32× 6 matrix by row

















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 3 1 3 1 2 1 3 1 3 1 2 1 2 2 2 1 2 1 2 1 2 1 1 2 2
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

















T

.

It is easy to show that J2
Z5
(d̃2) = 20736 from Theorem 4. Thus, both the J-characteristic

JZ5
(d̃2) from Theorem 3 and the one from Theorem 4 are the same as the results cal-

culated by Definition 6.

5 Generalized resolution and minimum aberration

criteria of four-level designs

Given an orthogonal design OA(n; 2m), Deng and Tang (1999) proved that all J-

characteristics are multiples of 4. For any design d ∈ D(n; 4m), the mapped design of de-

sign d based on replacement rule φ is not necessarily an orthogonal design OA(n; 22m).

In order to investigate the properties of J-characteristics of design d ∈ D(n; 4m), it is

bringing the attention to the case of n is a multiple of 4 in the following.
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Define E = {4i : i is positive integer}, F = {i : i is even}, V = {a = (a1, . . . , an)
T :

ai ∈ {1,−1}, n ∈ E ,
∑n

i=1 ai ∈ F}. Define a new operation ◦ on the set V: ∀a,b ∈ V,

where a = (a1, . . . , an)
T ,b = (b1, . . . , bn)

T , then a ◦ b = (a1b1, . . . , anbn)
T . Lemma 1

shows that the set V is a group for the operation ◦ as follows.

Lemma 1 The set V is a group for the operation ◦.

Proof. The four conditions of V as a group given in Definition 5 are verified respec-

tively.

(i) ∀ a,b ∈ V,
∑n

i=1 ai,
∑n

i=1 bi ∈ F , suppose a and b respectively contain 2k1 and

2k2 −1’s, where 0 ≤ k1, k2 ≤ n/2. Denote c = a◦b, (a,b) is the n×2 matrix consisted

of a and b. If the number of pair (1, 1) in (a,b) is k , then the numbers of pairs (1,−1)

and (−1, 1) in (a,b) are n − 2k1 − k and n − 2k2 − k, respectively. Therefore, the

number of −1’s in the vector c is (n− 2k1 − k) + (n− 2k2 − k) = 2(n− k1 − k2 − k),

thus
∑n

i=1 ci ∈ F , i.e., c ∈ V.

(ii) ∀ a,b, c ∈ V, (a ◦ b) ◦ c = a ◦ (b ◦ c) = (a1b1c1, . . . , anbncn)
T .

(iii) For e = (1, 1, . . . , 1)T ∈ V and ∀ a ∈ V, e ◦ a = a ◦ e = a. Thus, e is the unity

element of V.

(iv) ∀ a ∈ V, a ◦ a = e, thus the inverse of a is itself.

Propostion 1 For any design d′ ∈ D(n; 2m) with n ∈ E and u ⊆ Zm, let d′u be the

projection design of design d′ on set u, then Ju(d
′
u) is a multiple of 4.

Proof. ∀u = {i1, . . . , ik} ⊆ Zm, where |u| = k, k = 0, 1, . . . , m, denote the projection

design of design d′ on set u as d′u = (di1, . . . , dik). Obviously, dij ∈ V, j = 1, . . . , k.

Denote c = di1 ◦ · · · ◦ dik , by the closeness of group V, then vector c ∈ V, i.e. there are

even number of −1’s in vector c. Let x be the number of −1’s in vector c, then the

number of 1’s in vector c is n − x. Thus, Ju(d
′
u) = J1(c) = n − 2x is a multiple of 4

since n ∈ E , which completes the proof.

For any design d ∈ D(n; 4m), it is obvious that n is a multiple of 4 since d is a

U-type design. Therefore, for any u ⊆ Zm, the run number of the projection design du

of design d on set u is a multiple of 4, and the same as for the mapped design d′u of du.

From Propostion 1, the following result is obvious.

Propostion 2 For any design d ∈ D(n; 4m) and u ⊆ Zm, let du be the projection design

of design d on set u and Ju(du) be its J-characteristic. Then Ju(du) is a multiple of 4.
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In order to give an upper bound of the J-characteristics Ju(du) of four-level design

d ∈ D(n; 4m), two lemmas are required.

Define V1 = {a = (a1, . . . , an)
T , ai ∈ {1,−1}, n ∈ E ,

∑n

i=1 ai = 0} and V2 = {a =

(a1, . . . , an)
T , ai ∈ {1,−1}, n ∈ E ,

∑n

i=1 ai ∈ E}. Obviously, both V1 and V2 are subsets

of set V, i.e., V1,V2 ⊆ V.

Lemma 2 For any a1 ∈ V1, a2 ∈ V, let γ be the number of pair (1, 1) in the n × 2

matrix (a1, a2), J2(a1, a2) and J1(a2) are respectively the J-characteristics of (a1, a2)

and a2. Then J2(a1, a2) = 4γ − J1(a2)− n, where 0 ≤ γ ≤ n/2.

Proof. Since a2 ∈ V, the numbers of 1 and −1 in a2 are respectively (n+J1(a2))/2 and

(n − J1(a2))/2. It is noting that γ is the number of pair (1, 1) in matrix (a1, a2) and

a1 ∈ V1, the pair (1,−1) appears n/2−γ times in matrix (a1, a2). Furthermore, the pair

(−1, 1) appears (n+J1(a2))/2−γ times in matrix (a1, a2), and the pair (−1,−1) appears

γ − J1(a2)/2 times in matrix (a1, a2). From Definition 1, J2(a1, a2) = 4γ − J1(a2)− n,

which completes the proof.

Lemma 3 For any a1, a2 ∈ V1, a3 ∈ V2, let J2(a2, a3) and J2(a1, a3) be the J-

characteristics of (a2, a3) and (a1, a3), respectively. If aT
1 a2 = 0, then J2(a2, a3) +

J2(a1, a3) ≤ n.

Proof. For any a1 ∈ V1, the entries of a1 are divided into two groups, where the entries

of the first group are all 1’s and the entries of the second group are all −1’s. Let γ be

the number of pair (1, 1) in matrix (a1, a3), and J1(a3) be the J-characteristic of a3.

From Lemma 2, J2(a1, a3) = 4γ − J1(a3)− n.

If aT
1 a2 = 0, J1(a3) is a positive integer and it is a multiple of 4, there are at most

n/4 entries in a2 corresponding to the first group of a1 that can form the pair (1, 1)

coupling with the entries of a3, and there are at most min{(n + J1(a3))/2 − γ, n/4}

entries in a2 corresponding to the second group of a1 that can form the pair (1, 1)

coupling with the entries of a3. Thus, the number of pair (1, 1) in matrix (a2, a3) is

at most n/4 + min{(n + J1(c3))/2 − γ, n/4}. It is easy to show that if and only if

(n+ J1(c3))/2− γ = n/4, J1(a3) is the minimum such that the pair (1, 1) appears the

maximum times n/2 in matrix (a2, a3).

Combining the two conditions obtained above, i.e.,






J2(a1, a3) = 4γ − J1(a3)− n,

n+J1(a3)
2

− γ = n
4
.

Thus, J1(a3) = J2(a1, a3). On the other hand, from Lemma 2, the maximum J-

characteristic of matrix (a2, a3) is 4n/2− J1(a3)− n = n− J2(a1, a3), i.e., J2(a2, a3) ≤
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n− J2(a1, a3) implies J2(a2, a3) + J2(a1, a3) ≤ n, which completes the proof.

Based on Lemma 3, an upper bound of the J-characteristic Ju(du) for any four-level

design d ∈ D(n; 4m) is given in Theorem 5 as follows.

Theorem 5 For any design d ∈ D(n; 4m) and u ⊆ Zm with |u| = k, k = 1, . . . , m, let

du be the projection design of design d on the set u and Ju(du) be its J-characteristic.

Then Ju(du) ≤ n(3k + 1)/2.

Proof. Let d′u be the mapped design of design du via replacement rule φ, and d′0 be

the first design in the effective sub-design sequence of design d′u. Denote l = JZk
(d′0),

from Propostion 1, l is a multiple of 4 and can be expressed as l = 4t, t = 0, 1, . . . , n/4.

From Lemma 3, when k is even,

Ju(du) ≤ l

(

k

k

)

2k + (n− l)

(

k

k − 1

)

2k−1 + l

(

k

k − 2

)

2k−2 + · · ·+ l

(

k

0

)

20

= n

[(

k

k − 1

)

2k−1 +

(

k

k − 3

)

2k−3 + · · ·+

(

k

1

)

21
]

+ l

k
∑

i=0

(

k

i

)

(−2)i

=
n[3k − (−1)k]

2
+ l(−1)k

=
n(3k − 1)

2
+ l

≤
n(3k + 1)

2
.

Similarly, when k is odd,

Ju(du) ≤ l

(

k

k

)

2k + (n− l)

(

k

k − 1

)

2k−1 + l

(

k

k − 2

)

2k−2 + · · ·+ (n− l)

(

k

0

)

20

= n

[(

k

k − 1

)

2k−1 +

(

k

k − 3

)

2k−3 + · · ·+

(

k

0

)

20
]

− l

k
∑

i=0

(

k

i

)

(−2)i

=
n[3k + (−1)k]

2
− l(−1)k

=
n(3k − 1)

2
+ l

≤
n(3k + 1)

2
,

which completes the proof.

For any design d ∈ D(n; 4m), let r be the smallest integer such that max|u|=r |Ju(du)|

> 0, where the maximization is taken over all the subsets u of size r. Then the
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generalized resolution of design d ∈ D(n; 4m) is defined as R(d) = r + η, where

η = 1− 2max
|u|=r

|Ju(du)|/[n(3
r + 1)].

For any design d ∈ D(n; 4m) and u ⊆ Zm with |u| = k, k = 1, . . . , m, let fkj be the

frequency of projection design du such that |u| = k and |Ju(du)| = 4(tk +1− j), where

tk = n(3k + 1)/8 and j = 1, . . . , tk. The confounding frequency vector F (d) of design

d is defined as the following vector of length
∑m

k=2 tk

F (d) = [(f21, . . . , f2t2); (f31, . . . , f3t3); . . . ; (fm1, . . . , fmtm)].

For any design d ∈ D(n; 4m) and u ⊆ Zm with |u| = k, k = 2, . . . , m, B(d) =

(B2(d), . . . , Bm(d)) is defined as the B-vector of design d ∈ D(n; 4m), where

Bk(d) =
∑

|u|=k

β2
k(du)

and βk(du) = 2|Ju(du)|/[n(3
k + 1)] are normalized J-characteristics. For k = 2, . . . , m,

it is easy to show that

Bk(d) =

tk
∑

j=1

fkj

[

8(tk + 1− j)

n(3k + 1)

]2

.

Based on the confounding frequency vector F (d) and B-vector B(d) of design d

defined above, the minimum G-aberration criterion and the minimum G2-aberration

criterion for ranking four-level designs in D(n; 4m) are respectively defined as follows.

Definition 7 For any two designs d̃1, d̃2 ∈ D(n; 4m), let fr(d̃1) and fr(d̃2) be the

the r-th entries of confounding frequency vectors F (d̃1) and F (d̃2), respectively, r =

1, 2, . . . ,
∑m

k=2 tk. Then design d̃1 is said to have less G-aberration if fr(d̃1) < fr(d̃2),

and fi(d̃1) = fi(d̃2), i = 1, . . . , r− 1. If no design has less G-aberration than design d̃1,

then design d̃1 is said to have minimum G-aberration.

Definition 8 For any two designs d̃1, d̃2 ∈ D(n; 4m), let r be the the smallest integer

such thatBr(d̃1) 6= Br(d̃2). Then design d̃1 is said to have less G2-aberration if Br(d̃1) <

Br(d̃2), and Bi(d̃1) = Bi(d̃2), i = 1, . . . , r − 1. If no design has less G2-aberration than

design d̃1, then design d̃1 is said to have minimum G2-aberration.

Finally, three examples are given to illustrate above defined criteria for ranking

four-level designs.
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Example 3 Consider two designs d̃3 ∈ D(8; 48) and d̃4 ∈ D(8; 48) given Table 1.

Table 1: Four-level designs d̃3 ∈ D(8; 48), d̃4 ∈ D(8; 48)

d̃3 d̃4
3 -3 -1 3 3 1 -3 -1 -3 3 -1 -3 -1 1 -3 1
1 -1 3 -3 -3 1 3 3 1 3 -1 3 1 1 3 -3
-1 -3 3 1 -1 -3 -3 -3 -3 -1 1 1 3 -3 3 1
-3 3 1 -3 -3 -3 1 -1 -1 -3 -3 1 -3 3 1 -1
-3 1 -3 3 -1 3 -1 3 3 1 3 -1 1 3 1 3
1 1 1 1 3 -1 -1 1 1 -3 1 3 -1 -1 -3 3
-1 3 -1 -1 1 3 3 1 -1 1 3 -1 -3 -3 -1 -3
3 -1 -3 -1 1 -1 1 -3 3 -1 -3 -3 3 -1 -1 -1

The generalized resolutions of d̃3 and d̃4 are respectively 2.2 and 2.6, thus design

d̃4 has higher generalized resolution than design d̃3.

The confounding frequency vectors of d̃3 and d̃4 are respectively F (d̃3) = [(0, 0, 1, 1, 4,

1, 6, 3, 5, 3); (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 8, 2, 0, 3, 8, 3, 5, 1, 13, 7); . . .] and F

(d̃4) = [(0, 0, 0, 0, 0, 0, 2, 7, 4, 9); (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 1, 5, 1, 2, 5, 4, 0, 6, 1, 6,

11, 1, 3); . . .], thus design d̃4 has less G-aberration than design d̃3.

The B-vectors of d̃3 and d̃4 are respectively B(d̃3) = (4.28, 3.48, 3.33, 0.80, 0.17, 0.02,

0.00) and B(d̃4) = (1.20, 4.92, 1.40, 0.36, 0.05, 0.00, 0.00), thus design d̃4 has less G2-

aberration than design d̃3.

Example 4 Consider two designs d̃5 ∈ D(8; 43) and d̃6 ∈ D(8; 43) given in Table 2,

where design d̃6 is obtained by level permutation (−3,−1, 1, 3) → (1,−1,−3, 3) of

design d̃5 in the third column.

The generalized resolutions of d̃5 and d̃6 are respectively 2.6 and 2.2, thus design

d̃5 has higher generalized resolution than design d̃6.

The confounding frequency vectors of d̃5 and d̃6 are respectively F (d̃5) = [(0, 0, 0, 0, 0,

0, 1, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)],F (d̃6) = [(0,

0, 1, 0, 0, 0, 2, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)], thus

design d̃5 has less G-aberration than design d̃6.

The B-vectors of designs d̃5 and d̃6 are respectively B(d̃5) = (0.16, 0.02) and

B(d̃6) = (0.96, 0.02), thus design d̃5 has less G2-aberration than design d̃6.

It is noting that the generalized word-length patterns of both designs d̃5 and d̃6 are

(0, 3, 4), they can be further ranked by the criteria in this paper.
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Table 2: Four-level designs d̃5 ∈ D(8; 43), d̃6 ∈ D(8; 43)

d̃5 d̃6
3 1 1 3 1 -3
3 3 -1 3 3 -1
-1 1 -1 -1 1 -1
-1 3 1 -1 3 -3
1 -3 -3 1 -3 1
-3 -1 -3 -3 -1 1
1 -1 3 1 -1 3
-3 -3 3 -3 -3 3

Example 5 Consider two designs d̃7 ∈ D(8; 47) and d̃8 ∈ D(8; 47) given in Table 3.

Table 3: Four-level designs d̃7 ∈ D(8; 47), d̃8 ∈ D(8; 47)

d̃7 d̃8
-3 3 3 -3 1 1 -3 -3 1 3 1 -1 -1 -1
-1 -1 -3 3 -1 1 1 1 -3 1 -3 1 3 1
3 1 1 -3 -3 -1 1 3 1 -3 3 -3 3 -3
3 -3 3 1 -1 -3 -1 -1 3 1 -1 3 -1 -3
1 -3 -1 3 3 -1 -3 -1 -1 3 3 -1 -3 1
-1 3 -1 -1 -3 3 -1 3 -1 -1 -3 3 1 -1
1 1 -3 -1 1 -3 3 1 3 -1 1 -3 -3 3
-3 -1 1 1 3 3 3 -3 -3 -3 -1 1 1 3

The generalized resolutions of both d̃7 and d̃8 are 2.2, that is, the generalized reso-

lution of design d̃7 is the same as the one of design d̃8.

The confounding frequency vectors of d̃7 and d̃8 are respectively F (d̃7) = [(0, 0, 2, 0, 0,

0, 7, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 5, 0, 0, 0, 10, 0, 2, 0, 5, 0, 4, 0); . . .], F (d̃8)

= [(0, 0, 1, 0, 0, 2, 5, 3, 2, 8); (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 4, 1, 3, 2, 1, 3, 5, 2, 0, 2, 3,

3); . . .], thus design d̃8 has less G-aberration than design d̃7.

The B-vectors of designs d̃7 and d̃8 are respectively B(d̃7) = (2.40, 2.85, 0.86, 0.21,

0.05, 0.00) and B(d̃8) = (2.37, 3.49, 1.43, 0.60, 0.16, 0.00), thus design d̃8 has less G2-

aberration than design d̃7.

It can be seen that although the generalized resolutions of designs d̃7 and d̃8 are

the same, they can be ranked by minimum G-aberration and minimum G2-aberration

criteria.
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6 Concluding remarks

It is much easier to study and deal with two-level designs compared with multi-level

designs as the former have more comprehensible theoretical system. Therefore, it is

desirable to obtain relevant theories of J-characteristics of four-level designs based on

theories of J-characteristics of two-level designs.

Focusing on the discussion of four-level designs in this paper, the theory of J-

characteristics of four-level designs is studied based their mapped two-level design-

s, which are obtained from quaternary codes. Firstly, the relationship between the

minimum G2-aberration criterion of two-level design and the generalized minimum

aberration criterion of its projection designs is given. Subsequently, the definition of

J-characteristics of four-level designs is proposed via the bridge of quaternary codes,

and the connection between J-characteristics of four-level design and J-characteristics

of effective two-level sub-designs is built. Finally, generalized resolution, minimum

G-aberration and minimum G2-aberration criteria for four-level designs are also given

based on the J-characteristics of four-level design, which play an important role in

screening four-level designs with less aberration.

A question arises now: How to construct a class of optimal four-level designs with

minimum G2-aberration? It is a potential work worthy for further investigations in the

future.
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