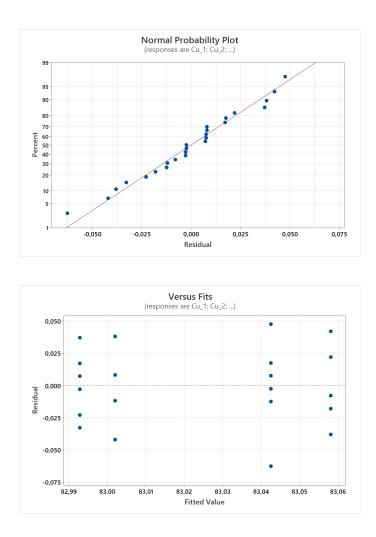

Solution Problem 2.

a)

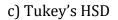
The alloys Cu_1 and Cu_3 seems to contain more copper than Cu_2 and Cu_4. For alloy Cu_1 there is a potential outlier.

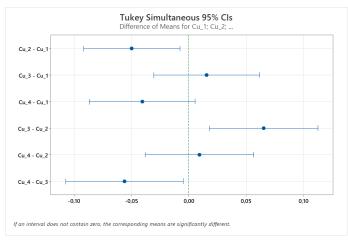
b)

Analysis of Variance


					F-	P -
Source	DF	Adj SS	6 Adj	MS	Value	Value
Factor	3 (0,01772	0,005	908	7,03	0,002
Error	210	0,01765	0,000	841		
Total	240	0,03538	}			

The p- value from the F-test is 0.002 and the nullhypothesis that all alloys are equal is rejected


Means


Factor	N Mean StDev	95% CI
Cu_1	8 83,0425 0,0311	(83,0212;
		83,0638)
Cu_2	7 82,9929 0,0236	(82,9701;
		83,0156)
Cu_3	5 83,0580 0,0319	(83,0310;
		83,0850)
Cu_4	5 83,0020 0,0295	(82,9750;
		83,0290)

Pooled StDev = 0,0289933

From the estimated standard-deviations it seems like all the variances are approximately equal. The normal plot looks okay, and the residuals plotted against the fitted values (the means) does not detect any serious violence of the assumptions. If we had known the order in which the experiments have been carried through, we could also have checked for pattern that could indicate dependence.

Grouping Information Using the Tukey Method and 95% Confidence

Factor N Mean Grouping

 $\begin{array}{cccc} Cu_3 & 5\,83,\!0580\,A \\ Cu_1 & 8\,83,\!0425\,A & B \\ Cu_4 & 5\,83,\!0020 & B & C \\ Cu_2 & 7\,82,\!9929 & C \\ \end{array}$

Means that do not share a letter are significantly different.

From the figure we observe that Cu_2 and Cu_4 group together (C, C). These should not be declared different. Likevise Cu_1 and Cu_4 (B, B) and also Cu_3 and Cu_1 (A, A).