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                            Design of Experiments  
                                                          by 

                                         John Tyssedal, NTNU 

 

 Experimentation is an old discipline, but modern design of experiments theory dates 

back to the pioneering work of Ronald Aylmer Fisher (1890-1962) at the Rothamsted 

Experimental Station, where he became a statistician in 1919.  Rothamsted Experimental  

Station was an agricultural research institute. Fisher soon experienced the problems by trying 

to analyse haphazardly collected data and realized the advantage it would be to collect these 

in a planned and controlled manner. In 1935 he published his famous book Design of 

Experiments.  Surprisingly fast his ideas found its way into industry, but there they seemed to 

have an obstacle for success. Agricultural experiments tend to be large in scale, having 

several variables with many levels for each variable that needed to be replicated. And they 

may take a long time to complete. Experiments in industry can be expensive, thereby cost 

considerations need to be taken into account. On the other side, in contrast to agriculture 

where one sows in the spring and harvests in the autumn, experiments in industry often give 

immediate response and new experiments can be planned and performed the next week. In the 

late 1940s George Box (1919-2013) discovered that sequential experimentation, where in 

each step smaller experiments with few levels for each factors were performed, much faster 

could bring a production process closer to optimal operational conditions. The analysis of 

such designs also relies more heavily on regression modelling. So, despite the evolution we 

will start with introducing the ideas for industrial experimentation first and then move on to 

more classic Design of Experiments theory.  

 

                                  Two-level factorial designs  

 
In the regression model  = +Y X    the design matrix X has a decisive impact on how easy 

it is to find a good model. Especially we have seen (chapter 12.7) that if the columns in the 

design matrix,
1 2 k

, x , x , x1 , are  orthogonal, the vector of the estimators for the coefficients 

is given by:  
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 Orthogonal columns give minimum variance in the estimators for the coefficients.   

 

When an experiment is conducted we can choose values for the explanatory variables 

k21 x,,x,x  . One should choose these such that it is as favourable for the estimation as 

possible.  
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Example 1 

 

We want to investigate how the yield of chemical process depends on the two factors 

temperature and concentration. It was conducted four experiments where two values for each 

of the factors were used. This gives four possible level combinations of the two factors to test 

out the yield of the process. The experiment is given below where also the registered yield of 

the process is given.  

 

 

Experiment 

number  

Temperature Concentration Yield 

1 160 20 60 

2 180 20 72 

3 160 40 54 

4 180 40 68 

 

 

A model of the form ( ) 0 1 1 2 2 12 1 2
E Y x x x x   = + + +  can then be estimated from the data 

where the four values for the yield are the observed response values and the design matrix X  

consists of a column of four ones, a column with the values for the temperature, one column 

with the concentration values and one with the values of the product of the temperature and 

the concentration values.  

 

                                         

1 160 20 3200

1 180 20 3600

1 160 40 6400

1 180 40 7200

 
 
 =
 
 
 

X  

 

 
 

A Regression Analysis in R of yield versus temperature (x1); concentration (x2) and 

temperatureconcentration gave.  
 
 

Call: 

lm.default(formula = y ~ x1 + x2 + x1x2) 

 

Residuals: 

ALL 4 residuals are 0: no residual degrees of freedom! 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)  -14.000         NA      NA       NA 

x1             0.500         NA      NA       NA 

x2            -1.100         NA      NA       NA 

x1x2           0.005         NA      NA       NA 

 

 

 

First we will only be concerned with the estimated coefficients 
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Let us now recode the factors by introducing new factors 1
1

170

10

x
z

−
=  and 2

2

30

10

x
z

−
= .  The 

values of the new factors are thus centred and we have divided down by half the distance 

between the high and the low levels of the factors.  

 

The new design matrix becomes:  

 

                                           

1 1 1   1

1   1 1 1

1 1   1 1

1   1   1   1

− − 
 

− −
 
 − −
 
 

 

 

Notice that the new design matrix has only orthogonal columns and if we now compute the 

estimated coefficients we get from (1) that  
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Controlling the calculations by R gives for the recoded values of temperature and 

concentration:  
 
 

Call: 

lm.default(formula = y ~ z1 + z2 + z1z2) 

 

Residuals: 

ALL 4 residuals are 0: no residual degrees of freedom! 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)     63.5         NA      NA       NA 

z1               6.5         NA      NA       NA 

z2              -2.5         NA      NA       NA 

z1z2             0.5         NA      NA       NA 

 

  

To check if we have the same model we may substitute for 21 z,z  and 
12

z which gives:  
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( ) ( ) ( )( )1 2 1 2

170 30 170 30
63 5 6 5 2 5 0 5

10 10 10 10

x x x x
y

− − − −
= + − +


ˆ . . . .  

         = 63.5 110.5− +7.5+25.5+
1 1 2 2 1 2

0 65 0 15 0 25 0 85 0 005x x x x x x− − − +. . . . .  

         = 14− + 
1 2 1 2

0 5 1 1 0 005x x x x− +. . .  

 

When we are analyzing a two-level factorial design, it is normally simplest and most practical 

to recode the factor levels to 1 and –1 as above. Then we obtain orthogonal factor columns 

and it is simple to compute the coefficients.  

One other argument is that we often have qualitative variables as for instance we are going to 

test out two different brands or we want to test out what happens with or without any 

treatment. In the last case it is of interest to be able to measure the effect of the treatment on 

the response. Let the factor value 1 correspond to treatment and the factor value -1 correspond 

to no treatment. It is then of interest to calculate the average value of the response when the 

factor value is 1 and when the factor value is -1.  

 

Definition of main effect: 

 

For two-level designs we define the main effect of a factor as: Expected average response 

when the factor is on the high level – expected average response when the factor is at the low 

level.  

 

it is natural to estimate this effect by 
H L

y y−  and for temperature this becomes:  

                          

                                             
1

72 68 60 54
13 2

2 2
b

+ +
− = = *  

and for concentration  

 

                                              2

54 68 72 60
5 2

2 2
b

+ +
− = − = *  

 

Estimated main effect of a factor will always be the corresponding main regression coefficient 

multiplied by 2, since a main effect measure change in the expected response when we move 

from the low-level, -1, to the high level, +1, of the factor or when the recoded factor changes 

two units. The regression coefficients, however, measure the change in the expected response 

when the factor changes from 0 to 1.  

 

In our example the coefficient in front of the 21xx  term,
12

b , is small. This coefficient tells us 

if there is any interaction between the two factors or not.  

 

Definition 

 

The interaction between two factors is defined as: Half the main effect of a factor when the 

other is on the high level – half the main effect of a factor when the other factor is at its low 

level.  

 

To estimate the interaction between temperature and concentration we therefore need to 

compute:   
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Estimated main-effect of temperature when concentration is on its high level is given by:  

 

                                             68 – 54 = 14 

 

Estimated main-effect of temperature when concentration is on its low level is given by:  

 

                                             72 – 60 = 12  

  

The estimated interaction then becomes:
12

14 12
1 2

2 2
b− = = * . 

 

 

Signs for computing the contrasts.  

 

For two level experiments we have: All quantitative levels can be recoded to –1 and 1. All 

qualitative level can naturally be set to these values. If we agree upon that the high level of a 

factor corresponds to 1 and the low level corresponds to –1, we notice from above that 

estimation of effects can be done by adding together the response values with signs decided 

by the signs in the design matrix and thereafter divide by half the number of observations. We 

therefore construct a sign matrix where the necessary signs for computing the effects are 

given. In our case this matrix becomes:  

 

                                              

Temp Concentration Temp*Conc 

- - + 

+ - - 

- + - 

+ + + 

 

 

Other notation for level combinations.  

 

High level is marked with the letter for the factor. Low level is marked with 1. 1 is left out if 

other letters are used.  

 

Example:                  

A B Level code 

- - 1 

+ - a 

- + b 

+ + ab 

 
32 experiments. 

 

A k2  experiment has k factors, each at two levels. In example 1 our concern was a 22  

experiment and how we can estimate the effects in such an experiment. Actually there was a 

third qualitative factor in this experiment, catalyst. With three factors each at two levels it is 

possible to construct 8 possible level combinations of high and low or + and – as we normally 

recode the levels to. Let A be temperature, B concentration and C catalyst. Then we get the 

following sign matrix extended with level codes and response values.  
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A B C AB AC BC ABC levelcode y 

- - - + + + - 1 60 

+ - - - - + + a 72 

- + - - + - + b 54 

+ + - + - - - ab 68 

- - + + - - + c 52 

+ - + - + - - ac 83 

- + + - - + - bc 45 

+ + + + + + + abc 80 

  

 

Estimated main effects becomes: 

 

23
4

45525460

4

80836872
Â =

+++
−

+++
=  

5
4

83527260

4

80456854
B̂ −=

+++
−

+++
=  

5.1
4

68547260

4

80458352
Ĉ =

+++
−

+++
=  

 

For computing the interaction between A and B, AB, we need to find the main effect of A 

when B is at its high level and subtract the main effect of A when B is at its low level and 

thereafter divide by two. This corresponds to adding together the response values with the 

same sign as in the column for factor A when B is at its high level and adding them together 

with the opposite sign of what is in column A when B is at its low level and thereafter divide 

by half the number of observations. This is equivalent to use a factor column for calculation 

of effects where the signs in the columns for factor A and factor B are multiplied together or 

the signs in the column for AB above. In the same way we can compute the signs in the other 

two-factor interaction columns. The signs in the column for the three-factor interaction ABC 

is obtained by multiplying together the signs in the columns for A, B and C. This gives  

 

5.1
4

45835472

4

80526860
B̂A =

+++
−

+++
=  

10
4

45526872

4

80835460
ĈA =

+++
−

+++
=  

0
4

54685283

4

72608045
ĈB =

++++
−

+++
=  

5.0
4

68604583

4

72545280
ĈAB =

+++
−

+++
=  

 

In R the analysis involves the function linear models.  
 

Call: 

lm.default(formula = y ~ (.)^3, data = plan) 

 

Residuals: 

ALL 8 residuals are 0: no residual degrees of freedom! 
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Coefficients: 

                      Estimate        Std. Error    t value    

Pr(>|t|) 

(Intercept)     6.425e+01         NA          NA           NA 

A1              1.150e+01         NA          NA           NA 

B1             -2.500e+00         NA          NA           NA 

C1              7.500e-01         NA          NA           NA 

A1:B1           7.500e-01         NA          NA           NA 

A1:C1           5.000e+00         NA          NA           NA 

B1:C1          -4.017e-15         NA          NA           NA 

A1:B1:C1        2.500e-01         NA          NA           NA 

 

and in order to obtain the estimated effects we have to multiply the coefficients with 2.  

 
  (Intercept)     A1             B1             C1                  

 1.285000e+02  2.300000e+01 -5.000000e+00  1.500000e+00  

  

   A1:B1         A1:C1        B1:C1       A1:B1:C1  

1.500000e+00 1.000000e+01 -8.033653e-15  5.000000e-01 

 

 

 
Evaluation of significant effects in unreplicated experiments 

 
The estimators for the effects are given by the following formula:  

n

i

i 1

2

i
Y

Effekt
n


==


ˆ  where n  is the number of observations and 
i

  is either 1 or –1 dependent on 

the signs in the columns for the effect we are calculating. Since all 
i

Y ,  1 2i n= , , ,  are 

independent we get: 

 

( )

n n
2 2

2i i
2 i 1 i 1
effekt 2 2

( ) 4 σ
4σ

σ

4

Var Y

Var Effekt
n n n


= == = = =
 

ˆ . 

 

If all the effects are zero and the data are normally distributed with the same variance, we get 

that all the estimators are
24

0  N
n

 
 
 

, . In a normal probability plot they should all be lying 

on a straight line. Those who fall off the line can be considered to be significant.  The 

motivation for this is as follows.  

 

Normalplot based on nscores. 

 

Such plots can be constructed as follows. Suppose we have n  independent observations 

1 2
, , ,

n
x x x  that all come from the same distribution Let the ordered values of these 

according to algebraic size be: ( ) ( ) ( )1 2 n
x ,x ,…,x . A direct estimate of their distribution function 
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( )( ) 1 2
i

P X x , i = , ,…,n  is given by i n . Theoretically it can be shown that  
3 8

1 4
i

i
F

n

−
=

+
 is a 

better choice. For the estimated effects from the 32  experiment with temperature, catalyst and 

concentration we can construct the following table:  

 

( )ix :     -5         0          0.5        1.5       1.5         10          23 

iF   :  0.086   0.224     0.362   0.500    0.638    0.776     0.914  

( )1

iF−

 

- 1.37   -0.76    -0.35      0       0.35     0.76      1.37        

 

The motivation for the third row is as follows. For normal distributed data 

( )( ) ( )i

i

x u
F x



− 
=   

 

. It is therefore to be expected that ( )
( )1 i

i

x
F





−
−

   such that a plot of  

( )
( )1 i

i

x
F





−
−

    against 
( )ix  approximately  becomes a straight line.  

 

 

A normal plot for the 32  experiment with temperature, catalyst and concentration is shown 

below:  
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We notice that estimated effects of temperature and the interaction between temperature and 

catalyst clearly separate from the others.  

 

In the normal-plot a * is placed at those effects that are judged significant. The judgement of 

significance is done by means of Lenth’s method.  
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Lenth’s method. 

 

For a random variable ( )20~ ,Z N  , the median of Z  approximately equals 0 675.   and 

hence ( )1 5 median of Z  1 5 0 675 1 0125. . . .       . Now let 
1 2
, , ,

m
    be independent 

estimators of the effects obtained from orthogonal contrasts and let their variance be 2 . An 

estimator for   is then given by:  

                              ( )1 5 Median 1 2. , , , ,
i

i m =  =  

and a more refined estimator  

                              ( )1 5 Median : 2 5* . .
i i

   =    

For testing       
0 1
: 0     : 0

i i
H H =     

we use that 
*

iT



=  is approximately t-distributed with 3m  degrees of freedom. If more 

accurate inference is needed, a table of critical values is given in the book Experiments, 

Planning, Analysis and Optimization by Hamada and Wu (2009), p 702.  

 

Using higher order interactions to test for significance of effects.  

 

Often it is assumed that three-factor and higher order interactions are zero. If the assumption 

is true, these can be used to estimate the variance of the effects. In a 42  experiment we can 

estimate 4 three-factor and one four-factor interaction. By averaging the five squared three-

factor and four-factor interactions, we get an estimate for the variance of the effects with 5 

degrees of freedom. This can be used in evaluating the significance of the effects. For 

instance, factor A is significant if  

 

5,
2

α

Â

t
s

Â
 . 

 

Example 

A 42  experiment in the four factors A =catalyst charge, B = temperature, C = pressure and D 

= concentration was performed in a process development study. The 16 experiments set up in 

standard form are shown below. Here also all the interaction columns are included.   
 

 

Row     A     B     C     D     AB    AC    AD    BC    BD    CD   ABC   ABD 

 

   1    -1    -1    -1    -1     1     1     1     1     1     1    -1    -1 

   2     1    -1    -1    -1    -1    -1    -1     1     1     1     1     1 

   3    -1     1    -1    -1    -1     1     1    -1    -1     1     1     1 

   4     1     1    -1    -1     1    -1    -1    -1    -1     1    -1    -1 

   5    -1    -1     1    -1     1    -1     1    -1     1    -1     1    -1 

   6     1    -1     1    -1    -1     1    -1    -1     1    -1    -1     1 

   7    -1     1     1    -1    -1    -1     1     1    -1    -1    -1     1 

   8     1     1     1    -1     1     1    -1     1    -1    -1     1    -1 

   9    -1    -1    -1     1     1     1    -1     1    -1    -1    -1     1 

  10     1    -1    -1     1    -1    -1     1     1    -1    -1     1    -1 

  11    -1     1    -1     1    -1     1    -1    -1     1    -1     1    -1 

  12     1     1    -1     1     1    -1     1    -1     1    -1    -1     1 

  13    -1    -1     1     1     1    -1    -1    -1    -1     1     1     1 

  14     1    -1     1     1    -1     1     1    -1    -1     1    -1    -1 

  15    -1     1     1     1    -1    -1    -1     1     1     1    -1    -1 



 10 

  16     1     1     1     1     1     1     1     1     1     1     1     1 

 

 

 Row   ACD   BCD   ABCD 

 

   1    -1    -1      1 

   2     1    -1     -1 

   3    -1     1     -1 

   4     1     1      1 

   5     1     1     -1 

   6    -1     1      1 

   7     1    -1      1 

   8    -1    -1     -1 

   9     1     1     -1 

  10    -1     1      1 

  11     1    -1      1 

  12    -1    -1     -1 

  13    -1    -1      1 

  14     1    -1     -1 

  15    -1     1     -1 

  16     1     1      1 

 

The 16 response values for percentage conversion are:  

 

     71     61     90     82     68     61     87     80     61     50 

     89     83     59     51     85     78 

Fractional Factorial Fit:  % Conversion versus A; B; C; D 
 

Residuals: 

ALL 16 residuals are 0: no residual degrees of freedom! 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  7.225e+01         NA      NA       NA 

A1          -4.000e+00         NA      NA       NA 

B1           1.200e+01         NA      NA       NA 

C1          -1.125e+00         NA      NA       NA 

D1          -2.750e+00         NA      NA       NA 

A1:B1        5.000e-01         NA      NA       NA 

A1:C1        3.750e-01         NA      NA       NA 

A1:D1        2.229e-16         NA      NA       NA 

B1:C1       -6.250e-01         NA      NA       NA 

B1:D1        2.250e+00         NA      NA       NA 

C1:D1       -1.250e-01         NA      NA       NA 

A1:B1:C1    -3.750e-01         NA      NA       NA 

A1:B1:D1     2.500e-01         NA      NA       NA 

A1:C1:D1    -1.250e-01         NA      NA       NA 

B1:C1:D1    -3.750e-01         NA      NA       NA 

A1:B1:C1:D1 -1.250e-01         NA      NA       NA 
 

And the estimated effects become:  
 

  (Intercept)       A1            B1            C1            D1  

 1.445000e+02 -8.000000e+00  2.400000e+01 -2.250000e+00 -5.500000e+00  

     A1:B1         A1:C1         A1:D1         B1:C1         B1:D1  

 1.000000e+00  7.500000e-01  4.458239e-16 -1.250000e+00  4.500000e+00  

     C1:D1      A1:B1:C1      A1:B1:D1      A1:C1:D1      B1:C1:D1  

-2.500000e-01 -7.500000e-01  5.000000e-01 -2.500000e-01 -7.500000e-01  

  A1:B1:C1:D1  

-2.500000e-01 
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The normal-plot indicates that the main effect of catalyst charge, temperature and 

concentration together with the interaction between temperature and concentration are 

significant. 

 

We notice that all the estimated three-factor and four-factor interactions are small. If the true 

value for these interactions are zero, their estimators will have expected value 0 and the same 

equal variance 2

effektσ . 

Therefore an estimator for 2

effektσ  is given by: 
5

D̂ABCD̂BCD̂ACD̂ABĈAB 22222 ++++
 

For our data the estimate becomes:   

3.0
5

)25.0()75.0()25.0()5.0()75.0(
s

22222
2

effekt =
−+−+−++−

=  

and the standard deviation of the effect is estimated to  effekts 0 3 0 55. .=  . 

 

By evaluation of significance the absolute value of the estimated effects shall be compared to: 

1.412.5710.55ts 0.025,5effekt == . Therefore one may question if also the main effect of 

pressure is significant.  

 

Estimation of variance by replication.   

 

In order to get a model independent estimate of the variance we need to replicate our 

experiment. If one replicate is performed, we have two response values for each level 

combination and both of these have the same expected value.  

 

Let 
11

y  and 
12

y  be the two observed response values for the first level combination. An 

estimate for the variance of the observations, ,σ2  is then given by:  



 12 

( )
2 22

2
11 12 11 12

1j 1 11 12

j 1

y y y y
y y y y

2 2=

+ +   
− = − + −   

   
 =

( )
22 2

11 1211 12 11 12

2 2 2

y yy y y y −− +   
+ =   

   

-
 

 

Normally we get  2k  such estimates that can be used to estimate 2σ  by averaging.  

Example. A 32  experiment with replicates.  

 

A B C 
1i

y  
2i

y  
1 2i i

y y−  ( )
2

2 1

2

i i
y y−

 

- - - 59 61 -2 2 

+ - - 74 70 4 8 

- + - 50 58 -8 32 

+ + - 69 67 2 2 

- - + 50 54 -4 8 

+ - + 81 85 -4 8 

- + + 46 44 2 2 

+ + + 79 81 -2 2 

Total      64 

 

 

The estimate for 2  then becomes: 2 64
8

8
s = = . 

2 2
2 24 4 4 8

2
16 16

effekt effekt

s
s

n




 
=  = = =  

 

By doing ( m -1) replicates (in total m  values for each level combination), an estimator for 

2  for each i  is given by 
( )

2

1 1

m
ij i

j

Y Y

m=

−

−
 . By averaging these we get an estimator for the 

variance with ( )1 2km − degrees of freedom.   

 

 
Interpretation of effects.  

 

If a factor has no interaction with other factors we interpret estimated main effects as the 

estimated change in expected response when we go from low to high level of the 

corresponding factors. If a factor has interactions with other factors the effect on the expected 

response by going from low to high level will depend on the level of those factors that are 

involved in an interaction with this factor. The interpretation of the effect of this factor is then 

done by means of interaction-plot(s).  

 

Example 
32  experiment for chemical yield. 

 

Here the estimated main-effect of temperature was 23 and the interaction between 

temperature and catalyst was estimated to 10. It is now possible to construct a table which 
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illustrates what happens for the 4 level combinations of A and C. A graphical visualization of 

this table is called an interaction plot.  

 

 

 C 

A - + 

- 
57

2

5460
=

+
 5.48

2

4552
=

+
 

+ 
70

2

6872
=

+
 5.81

2

8083
=

+
 

 

 

 

Main-effects plot and two-factor interaction plot is shown below. If there is no interaction 

between two factors the effect of one factor is the same independent of the level of the other 

factor. The lines in a two-factor interaction plot will then become parallel. This seems to be 

almost true for the factors A and B and for B and C, but not for the factors A and C.  

 

A

y

-1 1

50
55

60
65

70
75

80

B

-1 1

C

-1 1

Main effects plot for y
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y

-1

1

A

45
55

65
75

85

B

y
45

55
65

75
85

C

y
45

55
65

75
85

-1 1

A

y
y

-1

1

B

C

y

-1 1

A

y

B

y
y

-1

1

C

-1 1

Interaction plot matrix for y

 
 

The interpretation of the analysis is then that the effect of catalyst is negative when the 

temperature is its low level, but positive when temperature is at its high level. The best result 

for the yield is obtained when both temperature and catalyst is on their high level.  

 

A cube plot illustrates what level combinations are favourable.  

 

 

 

 

 

Cube plot for y

modeled = TRUE

-1 1

-1

1

-1

1

A

B

C

60 72

54 68

52 83

45 80
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Blocking in 2 p  experiment. 
   

An experiment should always be performed in a randomized order. Randomization is our best 

guarantee to obtain independent observations and reduces the chances for external factors 

(factors not included in the experiment) to influence our response such that we end up with 

wrong conclusions. It is also important to reset the level combinations for each experimental 

run to ensure that the observations have as equal variance as possible.  

 

If we are going to do many experiments, it will often be the case that the experimental 

condition changes from the start of the experimentation until it is done. Change in 

experimental conditions may influence the response values leading to wrong estimates for the 

effects. This can be avoided if we block the experiment. Sometimes there are other constraints 

like restrictions on the raw material that makes the use of blocking desirable. When an 

experiment is blocked the randomization should always be performed in each block.  

 
32  experiment in  2 blocks each  block of sixe 4. 

 

Assume we conduct the experiments where the three-factor interaction has a – in block 1 og 

the rest of the experiments in block 2. 

 

Run A B C AB AC BC  ABC 

1 - - - + + +  - 

4 + + - + - - Block 1 - 

6 + - + - + -  - 

7 - + + - - +  - 

         

2 + - - - - +  + 

3 - + - - + - Block 2 + 

5 - - + + - -  + 

8 + + + + + +  + 

 

We observe that if a number h  is added to all runs in block 2, the calculated estimates of 

main effects and two-factor interactions remain unchanged since there are equally many + and 

– in each block. This is not true for the three-factor interaction that will be confounded with 

the block effect.   

 

        

         32  experiment in 4 blocks, each block of sixe 2 

 

 Assume we block the 32  experiment in blocks using the following sign pattern in the two-

factor interaction columns for AB and BC.   

                                 

Block 1 Block 2 Block 3 Block 4 

(-   -) (-   +) (+   -) (+    +) 
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The design will then be blocked into 4 blocks as shown below: 

 

Block A B C Forsøk AB BC AC ABC 

Block 1 - + - 3 - - + + 

 + - + 6 - - + - 

Block 2 + - - 2 - + - + 

 - + + 7 - + - - 

Block 3 + + - 4 + - - - 

 - - + 5 + - - + 

Block 4 - - - 1 + + + - 

 + + + 8 + + + + 

 

AB, BC and AC are confounded with the block effect.  

 

How to decide which effects should be used for blocking  

 

We should strive at being in a position such that main-effects and low order interactions can 

be estimated. Let I be a column with only + signs. We notice that.  

           

                              I = AA=BB=CC 

 

where AA, BB, … means the entry-wise product of signs in the respective columns. 

Assume we block a 32 experiment letting D=ABC and E=AC be our blocking factors. The 

interaction between D and E then becomes: DE=ABCAC=B, i.e. one of the main effects are 

confounded with the block effect in addition to ABC and BC. 

 

Blocking in general 

 

Assume we are going to block a 62  experiment in 8 blocks using the blocking factors 

ACEB1 = ABEFB2 =  and ABCDB3 = . The blocking is then done using the following sign 

patterns in the corresponding three factor columns.  

 
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 

(- - -) (+ - -) (- + -) (+ + -) (- - +) (+ - +) (- + +) (+ + +) 

 

We get: 

               BCFACEABEFBB 21 ==  

               BDEACEABCDBB 31 ==  

               CDEFABEFABCDBB 32 ==  

          ADFDACEABEFABCBBB 321 ==  

 

These four interactions will together with ACEB1 = , ABEFB2 =  og ABCDB3 =
 

be 

confounded with the block effect.  
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The Analysis of variance table for 2p
 experiments 

 

In cases when an experiment is blocked it may be useful or even necessary to use an analysis 

of variance table to find an estimate for the variance of the response. If all columns in the 

design matrix are orthogonal, we have  

 

                    2 2 2 2 2 2

1 1 2 2

1 1 1

n n n

R i i k ki

i i i

SS b x b x b x
= = =

= + + +                    (2) 

 

In two-level experiments we have 2 1p −  effect columns and k  becomes 2 1p − . If we use that 

that a regression coefficient is equal to the corresponding effect divided by two and that for a 

two-level experiment 2

1

 =1,2, ,
n

ji

i

x n j k
=

= , ,  we get:  

            
2 2 2

4 4 4

ˆ ˆˆ ....
R

A n B n ABC n
SS

  
= + + +  

 

Each of the terms above gives us the sum of squares for the effects.  

 

For an 32 experiment this becomes:  

 

Source SS DF 

A 22 ˆ
A

SS A=  1 

B 22 ˆ
B

SS B=  1 

C            22 ˆ
C

SS C=  1 

AB 22 ˆ
AB

SS AB=  1 

AC 22 ˆ
AC

SS AC=  1 

BC 2

BC
SS 2BCˆ=  1 

ABC 22 ˆ
ABC

SS ABC=  1 

Total 
( )

2

1

n

T R i

i

SS SS y y
=

= = −  
7 

 

 

Notice that here
R T

SS SS= . This is due to that when a model with a constant term and seven 

effects are fitted to the data, all residuals become zero.  

 

If the three-factor interaction ABC is used as blocking factor, we can consider ABC to be a 

blocking factor instead of a three-factor interaction. The blocking factor has two levels which 

we can code to –1 and +1. The analysis of variance table therefore becomes:  

 

Source SS DF 

A 22 ˆ
A

SS A=  1 

B 22 ˆ
B

SS B=  1 

C            22 ˆ
C

SS C=  1 
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AB 22 ˆ
AB

SS AB=  1 

AC 22 ˆ
AC

SS AC=  1 

BC 22 ˆ
BC

SS BC=  1 

Block 22 ˆ
Block

SS ABC=  1 

Total 
( )

2

1

n

T i

i

SS y y
=

= −  
7 

 

 

In order to perform the experiment in 4 blocks, one might wish to introduce a factor with four 

levels. But four levels may be represented with two two-level factors. Thus, we can pick two 

effect-columns and block according to the four possible level combination in these two 

columns. The interaction between these two factors will then also be confounded with the 

block effect.  

 

For a 32 experiment divided into four blocks using two of the three two-factor interactions 

columns AB, AC and BC we get this analysis of variance table.  

 

 

Source SS DF 

A 22 ˆ
A

SS A=  1 

B 22 ˆ
B

SS B=  1 

C                   22 ˆ
C

SS C=  1 

Block 2 2 22 2 2ˆ ˆˆ
Block

SS AB BC AC= + +  3 

ABC 22 ˆ
ABC

SS ABC=  1 

Total 
( )

2

1

n

T i

i

SS y y
=

= −  
7 

 

 

 

Let us assume that a replicated 32 experiment is carried out in four blocks. It is then possible 

to block the experiment using ABC as the blocking factor in each replicate. The other 

blocking factor will have –1 for the first eight experiments and +1 for the eight last. Both 

block factor columns are orthogonal to the other columns. The same is true for their 

interaction column.  

 

Let the average in each of the four blocks be: 321 y,y,y  and 4y . In the sum of squares for the 

blocks the three estimated effects are given by:  

 

                                           1 32 4 -
2 2

y yy y ++ 
 
 

, 

 

                                          3 4 1 2-
2 2

y y y y+ + 
 
 

 and  
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                                           2 31 4 -
2 2

y yy y ++ 
 
 

 

 

The sum of squares for the blocks is:  

 

2 2 21 3 3 4 2 32 4 1 2 1 44( ) 4( ) 4( )
2 2 2 2 2 2

Block

y y y y y yy y y y y y
SS

+ + ++ + +
= − + − + −  

 

The analysis of variable table becomes: 

 

Source SS DF 

A 2ˆ4ASS A=  1 

B 2ˆ4BSS B=  1 

C                         24CSS C=  1 

AB 2ˆ4ABSS AB=  1 

AC 2ˆ4ACSS AC=  1 

BC 2ˆ4BCSS BC=  1 

Block 
BlockSS  3 

Error ( )E T A B BlockSS SS SS SS SS= − + + +  6 

Total 
2

1

( )
n

T i

i

SS y y
=

= −  
15 

 

 

Partial confounding 

 

A replicated experiment can be divided into blocks using different interactions each time. 

This is called partial confounding. If the experiment the first time is blocked using the ABC 

interaction and the next time the AB interaction it is possible to estimate the AB interaction 

the first time and the ABC interaction the next time and so on.   

 

The block-effect should now be calculated using the general formulae:  

 

                          ( )
2

m s

Block ib

i=1 b=1

SS = k y - y  

 

where k  is the number of observations in each block, m is the number of replicates, s is the 

number of blocks in each replicate, iby is the average in block b in replicate i  and y is the 

average of all observations.  

 

Suppose we want to do such a partial confounding for a replicated 32  experiment  

 

The analysis of variance table for a replicated 32  experiment becomes: 
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Source SS DF 

A 2ˆ4ASS A=  1 

B 2ˆ4ASS A=  1 

C                       24cSS C=  1 

AB 2ˆ2ABSS AB=  1 

AC 2ˆ4ACSS AC=  1 

BC 2ˆ4BCSS BC=  1 

ABC 2ˆ2ABCSS ABC=  1 

Block 
BlockSS  3 

Error ( )E T A B BlockSS SS SS SS SS= − + + +  5 

Total 
2

1

( )
n

T i

i

SS y y
=

= −  
15 

 

 

 

 

Fractional factorial designs. 
 

To save effort and costs we may want to find out by means of a 2 p  experiment if more than 

p  factors have any influence on the response. 

 

Example. Suppose we suspect that three factors influence the response but are only allowed to 

do 4 experiments.  

The full 32  experiment, extended with interaction columns can be written as:  

 

  

Run A B AB C AC BC ABC 

1 - - + - + + - 

2 + - - - - + + 

3 - + - - + - + 

4 + + + - - - - 

5 - - + + - - + 

6 + - - + + - - 

7 - + - + - + - 

8 + + + + + + + 

 

 

Let us carry out the 4 experiments with a + in the column for the three-factor interaction i.e.  

 

Run A B AB C AC BC 

2 + - - - - + 

3 - + - - + - 

5 - - + + - - 

8 + + + + + + 
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For the four chosen experiments we notice that I = ABC , which implies that AB and C get the 

same signs. This is also true for A and BC and for B and AC. I = ABC is the defining relation 

for the 4 run design. If we instead had chosen the four runs with a – in the three-factor 

interaction column the defining relation would have been I = -ABC .  

 

Now for the full 32  experiment we get 

                 
( )2 4 6 8 1 3 5 7

4

y y y y y y y y
A

+ + + − + + +
=  

               
( )1 2 7 8 3 4 5 6

4

y y y y y y y y
BC

+ + + + − + + +
=  

From the four run or 3 12 −  experiment we obtain  

                   
( )2 8 3 5

A A+ BC
2

y y y y
l

+ − +
= =  

In the same way 

                   B B+ ACl =  

                   C+AB
C

l =  

                   ABC 2
I

l y= +  

 

 

 

                    

where 
8

1

1 1 1 1

4 8 8 8
I i i i i

ABC i ABC ABC

l y y y y
+ = + −

= = + −     

 If all two- and three-factor interactions are small we would in theory be able to estimate all 

the three main-effects.  

 

Generator for the design 

 

In the 3 12 − experiment the signs in the AB column and the C column are the same i.e. C=AB 

This relation is called the generator for the design. 2C=AB C =I=ABC which means that 

equivalently can say that I=ABC  is the defining relation for the experiment (ABC is defining 

contrast). In order to find out which effects that are aliased (have the same signs in the factor 

columns) we may multiply the effects by the defining relation. Hence for the 3 12 −  experiment  

we get 

              AI = AABC = BC   A   BC 

              BI = BABC = AC   B   AC 

              CI = CABC = AB   C   AB 

 

About half fractions of  2 p  designs 

 

A half fraction of a 2 p  design is called a 12p−  design. This is to be read that we are going to 

experiment with p  two-level factors in 12p−  runs. It can be constructed as follows: 

Number the factors 1 2, , , p . Then construct a 12p−  design in the factors1 2 1, , , p − and let 

the design column for the last factor be the interaction column ( )123 1p − . If we remove 
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one of the factor columns we will have a complete fractional factorial design in the 1p −  

others.  

 

Example of a half-fraction.  

 

The following example is the often cited Reactor Example from Box, Hunter and Hunter 

(1978), page 377. The goal was to find out how five factors affected % reacted, y. Factors 

levels and the full 52  design is given below.  

 

Factors                                         -           +            

A: Feed rate conversion             10        15 

B: Catalyst (%)                             1          2  

C: Agitation rate (rpm)             100      120 

D: Temperature ( )0C                140      180 

E: Concentration (%)                   3          6      

 

 
      A  B  C  D  E  y 

  1  -1 -1 -1 -1 -1 61 

 *2   1 -1 -1 -1 -1 53 

 *3  -1  1 -1 -1 -1 63 

  4   1  1 -1 -1 -1 61 

 *5  -1 -1  1 -1 -1 53 

  6   1 -1  1 -1 -1 56 

  7  -1  1  1 -1 -1 54 

 *8   1  1  1 -1 -1 61 

 *9  -1 -1 -1  1 -1 69 

 10   1 -1 -1  1 -1 61 

 11  -1  1 -1  1 -1 94 

*12   1  1 -1  1 -1 93 

 13  -1 -1  1  1 -1 66 

*14   1 -1  1  1 -1 60 

*15  -1  1  1  1 -1 95 

 16   1  1  1  1 -1 98 

*17  -1 -1 -1 -1  1 56 

 18   1 -1 -1 -1  1 63 

 19  -1  1 -1 -1  1 70 

*20   1  1 -1 -1  1 65 

 21  -1 -1  1 -1  1 59 

*22   1 -1  1 -1  1 55 

*23  -1  1  1 -1  1 67 

 24   1  1  1 -1  1 65 

 25  -1 -1 -1  1  1 44 

*26   1 -1 -1  1  1 45 

*27  -1  1 -1  1  1 78 

 28   1  1 -1  1  1 77 

*29  -1 -1  1  1  1 49 

 30   1 -1  1  1  1 42 

 31  -1  1  1  1  1 81 

*32   1  1  1  1  1 82 

 

The estimated effects are given below together with a normal plot.  
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   (Intercept)        A1             B1             C1             D1  

  1.310000e+02  -1.375000e+00   1.950000e+01  -6.250000e-01   1.075000e+01  

       E1          A1:B1          A1:C1          A1:D1          A1:E1  

 -6.250000e+00   1.375000e+00   7.500000e-01  -8.750000e-01   1.250000e-01  

      B1:C1        B1:D1          B1:E1          C1:D1          C1:E1  

  8.750000e-01   1.325000e+01   2.000000e+00   2.125000e+00   8.750000e-01  

      D1:E1       A1:B1:C1       A1:B1:D1       A1:B1:E1       A1:C1:D1  

 -1.100000e+01   1.500000e+00   1.375000e+00  -1.875000e+00  -7.500000e-01  

     A1:C1:E1      A1:D1:E1       B1:C1:D1       B1:C1:E1       B1:D1:E1  

 -2.500000e+00   6.250000e-01   1.125000e+00   1.250000e-01  -2.500000e-01  

     C1:D1:E1    A1:B1:C1:D1    A1:B1:C1:E1    A1:B1:D1:E1    A1:C1:D1:E1  

  1.250000e-01  -7.031454e-15   1.500000e+00   6.250000e-01   1.000000e+00  

   B1:C1:D1:E1 A1:B1:C1:D1:E1  

 -6.250000e-01  -5.000000e-01 

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
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D:E

 

The normal plot indicates that the main-effects of B, D and E and the interactions BD and DE 

are the essential ones.  

 

Now assume we instead only run the 16 experiments that are marked with a *. This 

corresponds to running those 16 experiments for which I=ABCDE or equivalently letting  

E=ABCD.  The experimental runs would then be as follows.  

 
    A  B  C  D  E  y 

1  -1 -1 -1 -1  1 53 

2   1 -1 -1 -1 -1 63 

3  -1  1 -1 -1 -1 53 

4   1  1 -1 -1  1 61 

5  -1 -1  1 -1 -1 69 

6   1 -1  1 -1  1 93 

7  -1  1  1 -1  1 60 

8   1  1  1 -1 -1 95 

9  -1 -1 -1  1 -1 56 

10  1 -1 -1  1  1 65 

11 -1  1 -1  1  1 55 

12  1  1 -1  1 -1 67 

13 -1 -1  1  1  1 45 

14  1 -1  1  1 -1 78 

15 -1  1  1  1 -1 49 
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16  1  1  1  1  1 82 

 

Estimated main effects and two-factor interactions are given below together with a normal 

plot. 
  (Intercept)        A1            B1            C1            D1  

 1.305000e+02 -2.000000e+00  2.050000e+01  9.158391e-16  1.225000e+01  

       E1         A1:B1         A1:C1         A1:D1         A1:E1  

-6.250000e+00  1.500000e+00  5.000000e-01 -7.500000e-01  1.250000e+00  

     B1:C1         B1:D1         B1:E1         C1:D1         C1:E1  

 1.500000e+00  1.075000e+01  1.250000e+00  2.500000e-01  2.250000e+00  

     D1:E1  

-9.500000e+00 

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
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 s
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re
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D:E

 

We note that the same effects are judged significant by the normal plot and that their sizes are 

about the same as we obtained from the full 32 run experiment. The success of the half 

fractions in this case is due to fact that main effects are only aliased with four-factor 

interactions and two-factor interactions are only aliased with three-factor interactions.  

 

Resolution in fractions of 2 p  experiments.   

 

Definition. A design is said to be of resolution R if no p -factor effect is aliased with an effect 

containing less than R- p  factors.   

 

In a resolution R design we have: Main effects are aliased with R-1 factor interactions 

Two-factor interactions are aliased with R-2 factor interactions. 

 

Resolution III 

 

Main effects are aliased with two-factor interactions. Example 3 12 − , I=ABC. 

 

Resolution IV 

 

Main-effects are aliased with three-factor interactions. Two-factor interactions are aliased 

with two-factor interactions. Example 4 12 − , I=ABCD. 
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Resolution V 

 

Main-effects are aliased with four-factor interactions. Two-factor interactions are aliased with 

three-factor interactions. Example 5 12 − , I=ABCDE.  

 

For short the resolution of the design is always the length of the shortest word in the defining 

relation.  

 

 

 

Fractions of 2 p  experiments. 

 

A quarter fraction of a 52  experiment. i.e. a 5 22 −  experiment can be constructed as follows. 

Construct a 32  experiment in the factors A, B and C. let D=AB and E=AC. We notice that 

I=ABD and I=ACE and also that 2I =I=ABDACE=BCDE. Hence the defining relation is 

I=ABD=ACE=BCDE and the design will be of resolution III. 

 

Designs of resolution III 

   

A design where you assign factors to all possible 2 1p −  orthogonal columns of plus and 

minuses is called a saturated designs. Such designs will always be resolution III designs. 

 

An Example. The Bicycle experiment (BHH 1978). In this example we have 7 factors each at 

two levels and we just want to do 8 experiments. It was constructed as follows: First a 32  

experiment was constructed in the factors A, B and C. Thereafter the four other factors were 

assigned to factor columns in the following way: D=AB, E=AC, F=BC and G=ABC.  

 
Run A:Seat 

up/down 

B:Dynamo 

off/on 

C:Handlebars  

up/down 

D:Gear 

low/medi

um 

E: Rain- 

coat 

on/off 

F: Break 

fast 

yes/no 

G: Tires 

hard/soft 

Time to 

climb 

hill (sec) 

y 

1 - - - + + + - 69 

2 + - - - - + + 52 

3 - + - - + - + 60 

4 + + - + - - - 83 

5 - - + + - - + 71 

6 + - + - + - - 50 

7 - + + - - + - 59 

8 + + + + + + + 88 

 

The seven estimated effects are shown below, but to know what we actually are estimating we 

need to find the defining relations for this design:  

 
(Intercept)    A1    B1     C1    D1     E1     F1     G1 

      133.0   3.5   12.0   1.0   22.5   0.5    1.0    2.5 

         

From the four generators we obtain:  
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                        I = ABD=ACE=BCF=ABCG 

which gives 

                        

2

3

4

I =I=BCDE=ACDF=CDG=ABEF=BEG=AFG

I =I=DEF=ADEG=BDFG=CEFG

I =I=ABCDEFG

 

 

In order to find out how the estimates of an effect are aliased with other effects we need to 

multiply the effect by all these 15 words. Let us assume that all interactions of order three and 

higher are negligible. Then we get for the estimators of the main effects 

 

                            

A

B

C

D

E

F

G

A+BD+CE+FG

B+AD+CF+EG

C+AE+BF+DG

D+AB+CG+EF

E+AC+BG+DF

F+BC+AG+DE

G+CD+BE+AF

l

l

l

l

l

l

l

→

→

→

→

→

→

→

 

 

where the →  points to  which effects that are aliased or the expected value of the estimators.  

 

We notice that the estimates for 
B

l  and 
D

l  are larger than the others. If the factors A,C,E,F 

and G are inert, the 7 42 −  design can be interpreted as a repeated 22  design in the factors B 

and D. All interactions where the factors A,C,E,F and G are involved disappear and we get 

B D A
B, D and BDl l l→ → → . It is possible to construct 16 7 42 −  design by choosing + or – 

signs for the four generators.  

 

                      
D AB      F= BC

E = AC     G= ABC

=  

 
 

 

Often in a highly fractionated design we would like to be able to estimate the main effects free 

of aliasing with two-factor interactions. It is then possible to run a follow-up design with the 

generators D AB, E=-AC, F=-BC and G=ABC-= . For this design we obtain: 

 

                   

2

3

4

I=-ABD=-ACE=-BCF=ABCG

I =BCDE=ACDF=-CDG=ABEF=-BEG=-AFG

I =-DEF=ADEG=BDFG=CEFG

I =-ABCDEFG

 

  

which gives when we neglect interactions of order higher than 2.  
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A

B

G

A-BD-CE-FG

B-AD-CF-EG

G-CD-BE-AF

l

l

l







→

→

→

 

and                   

                   

A A

G G

A
2

2

l l

l l
G





+
→

+
→

 

 

If we instead were interested in examining one particular main effect, say D, and all 

interactions involved with this main effect we could run a follow-up design with generators  

D AB, E=AC, F=BC and G=ABC-=  i.e., we switch all the signs in the column for factor D. 

Thereby we obtain 

 

                     

2

3

4

I=-ABD=ACE=BCF=ABCG

I =-BCDE=-ACDF=-CDG=ABEF=BEG=AFG

I =-DEF=-ADEG=-BDFG=CEFG

I =-ABCDEFG

 

 

If third and higher order interactions are inert we get  

 

                           

A

B

D

A-BD+CE+FG

B-AD+CF+EG

     

D-AB-CG-EF

     

l

l

l

→

→

→

 

 

 Thus               

                           

D D

A A

D
2

BD
2

l l

l l

+
→

−
→  

Example. A follow up design to the bicycle example was conducted to investigate how factor 

D affected the response. The signs in the column for factor D were changed as shown in the 

table below. 
Run A:Seat 

up/down 

B:Dynamo 

off/on 

C:Handlebars  

up/down 

D:Gear 

low/medi

um 

E: Rain- 

coat 

on/off 

F: Break 

fast 

yes/no 

G: Tires 

hard/soft 

Time to 

climb 

hill (sec) 

      y 

1 - - - - + + - 47 

2 + - - + - + + 74 
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3 - + - + + - + 84 

4 + + - - - - - 62 

5 - - + - - - + 53 

6 + - + + + - - 78 

7 - + + + - + - 87 

8 + + + - + + + 60 
 

The estimated effects are:  
 
(Intercept)    A1      B1      C1       D1        E1      F1      G1 

     136.25   0.75   10.25    2.75     25.25    -1.75   -2.25   -0.75 

 

By combining these estimates with the ones from the first fraction we could obtain unbiased 

estimates for the main effect of factor D and all interactions involved with factor D. Here the 

two fractions gave very similar results and would strengthen our believes that B and D are the 

two really important factors.  

 

Constructing fold-over of resolution III designs 

 

Suppose we have constructed a 7 4

III
2 − design where D=AB, E=AC, F=BC and G=ABC. For the 

first eight runs we have
8

I ABD=ACE=BCF=ABCG=H= .  

Now add eight more runs from a 7 4

III
2 − design where D=-AB, E=-AC, F=-BC, G=ABC and 

8H I= − , i.e we add eight more runs where we have changed signs in each column.  The 16 

run design is shown below. Such a way of constructing designs where we first add a column 

of plus signs and thereafter double the run size by adding a new design where all the signs are 

switched is called construction by fold-over. If the resolution of a design is odd (3, 5, ...) we 

can always improve the resolution by one in this way. If the resolution is even (2, 4, ...), it will 

not be improved.  

 
Run A B C D E F G H 

1 - - - + + + - + 

2 + - - - - + + + 

3 - + - - + - + + 

4 + + - + - - - + 

5 - - + + - - + + 

6 + - + - + - - + 

7 - + + - - + - + 

8 + + + + + + + + 

9 + + + - - - + - 

10 - + + + + - - - 

11 + - + + - + - - 

12 - - + - + + + - 

13 + + - - + + - - 

14 - + - + - + + - 

15 + - - + + - + - 

16 - - - - - - - - 

 

 

For the last eight runs we have
8

I ABD=-ACE=-BCF=ABCG=-H= − . For the whole 16 runs 

design we get the following identity relationship:
16

I ABCG=ABDH=ACEH=BCFH= . 
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Multiplying these four words together two by two, three by three and finally all four, all the 

words are of length four and we have a resolution IV design.  

 

 

 

 

Blocking in fractionated factorial designs. 

 

When we block a fractionated design we need to take into account the defining relations. Let 

us illustrate this by two examples.  

Example: A 5 12 −  is to be run in two blocks each of size 8 run. For the half-fraction the 

defining relation is I=ABCDE. Suppose we block after the AB interaction. Then also 

IAB=ABCDEAB=CDE is confounded with the block effect. 

 

Example: The same design is to be run in four blocks using AC and BC. AB will then be 

confounded with the block effect. The same will be true for IAC, IAB and IBC or BDE, ADE 

and CDE.  

 

Final remarks and further reading 

 

The techniques you have learned about two-level experimentation can be used to “improve 

almost everything”, but not to optimize. In order to optimize a process you need to 

approximate the response by what we call a response surface which normally will be a second 

order function. And you need designs that can estimate such functions. These are called 

response surface designs. The most well-known is the central composite designs that add 

centre points and two-points on the axis for each factor to a two-level design. The distance 

from the centre to the points on the axis is often k−  and k where k  is the number of 

factors.  Though, you can obtain a lot by basic two-level experimentation and in a dynamic 

and rapidly changing world the focus may equally well be on “never ending improvement”  

instead of optimization. For those who want to learn more about this interesting and 

challenging topic the “classics” are: 

 

Box, G. E. P., Hunter, J. S. & Hunter, W. G.: Statistics for Experimenters (1978, 2005) 

Montgomery, D. C.: Design and Analysis of Experiments (2077, 9th edition) 

Wu, C. F. & Hamada, M.S.: Experiments, Planning, Analysis, and Optimization (2009, 2 th 

edition) . 

Box, G. E. P. & Draper, N. R.: Response Surfaces, Mixtures, and Ridge Analyses (2007). 

Myers, R. H. & Montgomery, D. C. & Anderson-Cook, C. M.: Response Surface 

Methodology (2016). 
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Analysis of variance. 

 
We will now consider some of the more classical theory about designing and analysis of 

experiments which originally stems from doing experiments in agriculture. The central issues 

are blocking, randomization, replications, fixed and random effects. Even though, as already 

pointed out, two-level experiments has a dominant role in industrial experimentation, there 

will certainly be situations where it is advantageous to experiment with more than two 

treatments or products (as in the example below). 

 

Analysis of variance is about how to make inference when comparing more than two 

populations. The data should be collected through designed experiments. Thereby 

randomization and blocking is central in the data collection procedure. One may also look 

upon it as a generalization of two-level experiments where we have more than two levels for 

each factor. 

 
One-way analysis of variance 

 
In one way analysis of variance there is just one factor which may have many levels.  

 

Example: Filters used to remove solid pollutants must be replaced as soon as they fail due to 

cracking or holes in the filter.  An experiment was conducted to test five types of filters, 

A,B,C,D and  E made from different fabrics. Six filters of each type were used under the same 

conditions and the number of hours until failure were recorded for each. Unfortunately one of 

the observations for filter type E was corrupted and had to be taken out. The data are given in 

the table below: 

 

 

Filters  

A B C D E 

261.1 221.9 201.4 300.9 360.6 

186.2 188.7 146.1 301.2 285.0 

239.1 167.7 173.9 308.9 455.1 

243.3 224.9 280.8 283.3 403.3 

296.8 

270.5 

178.8 

147.9 

96.8 

100.3 

193.3 

159.4 

457.9 

 

A general model for the observations where k is the number of levels and in is the number of 

observations on level i is:  

 

                  
( )
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i

ijiij


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==
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More common, let 





=

==
k

i

i

k

i

ii

n

n

1

1



  

 

We then have  

                         iii  +=−+=  

 

where ( ) 0
111111

=−=−=−= 
======

i

k

i

i

k

i

ii

k

i

ii

k

i

i

k

i

ii

k

i

ii nnnnnn   

 

which gives 
( )20, , and independent

 
1 2, , k, 1 2, ,

ij i ij

i

N
Y

i , j , n


  


= + + 

= =

 

 

 

Partitioning of variation 

 

Let 
i

n

j

ij

i
n

Y

Y

i


=

=
1

.
and 





=

= =
=

k

i

i

k

i

n

j

ij

n

Y

Y

i

1

1 1

..
 

We then have ...... iijiij YYYYYY −+−+= where ... YYi − is an estimator for i . 

We get           

            

          
2 2 2

1 1 1 1 1 1 1 1

2
i i i in n n nk k k k

ij .. ij i . i . .. ij i . i . ..

i j i j i j i j

Y Y Y Y Y Y Y Y Y Y  

The first two sums of squares are measuring the variation within groups and the variation 

between groups respectively.  For the last sum we notice that for each i  

 

                               
1

0
in

ij i . i . ..

j

Y Y Y Y  

Which gives us that the total sum of squares can be split into the following two sums of 

squares, The sum of squares for errors and the sum of squares for treatments:  

             

2 2 2

1 1 1 1 1 1

i i in n nk k k

ij .. ij i . i . ..

i j i j i j

Y Y Y Y Y Y  

 

Which for short is written as: T E ASS SS SS . Naturally 
ESS  is expected to sum up all 

natural variation in the data, while 
ASS  is expected to sum up the variation caused by that 

treatments or in this case filters may differ, much like 
ESS  and 

RSS in regression analysis.  

The first important question to answer is if the treatments have any effect or if 
RSS  is too 

large to be explained with natural variation only. Is it, like in regression analysis, possible to 

find idempotent matrices such that these sums of squares can be expressed as quadratic forms 
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by means of these matrices and thereby provide us with a statistical test that can be used for 

answering our question?  

 

  

 

 

 

 

 Some theory of quadratic forms useful for the analysis  of variance 

Let J  be a n× n  matrix of 1’s.  Also define 

1

1

1
0

1
0

*

J

J

J
k

n

n

k

n

n

 
 
 
 =
 
 
  

 where 

1 1

1 1

J
i

i i

n

n ×n

 
 

=
 
  

      and       
1

k

i

i

n n
=

= . 

D1. *I J−  and 
1*

J J
n

− are idempotent and symmetric with rank n - k  and 1k -  respectively. 

Further ( )
1

0* *I J J J
n

 
− − = 

 
 

Proof.  

The matrices are obviously symmetric and  

( )( )* * * * * * *I J I J I J J J J I J− − = − − + = −  

1 1 1 1 1 1* * * * *J J J J J J J J J J J
n n n n n n

  
− − = − − + = −  

  
 

Hence they are projection matrices and  

( ) ( ) ( )Rank tr tr n - k− = − =* *I J I J  

( ) ( )
1

Rank tr tr 1k -
 

− = − = 
 

* *J J J J
n

 

Further 

( )
1 1 1 1 1

0* * * * * * *I J J J J * J J J J J J J J J
n n n n n

 
− − = − − + = − − + = 

 
. 

 
 

Now assume 
( )20  

1 2 1 2

,

, , , , , , ,
ij i ij

i

N and independent
Y

j n i k


  


= + + 

= =
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Define 

1

11

12

1

1

2

Y

k

n

k

k

kn

Y

Y

Y

Y

Y

Y

 
 
 
 
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 
 =
 
 
 
 
 
 
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1

1

1

μ = Y =

k

k

k

n

E

n









 
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 
 
 

 
 
 
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and * n







 
 
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 


 

  

  (1) 

 

Then according to R6 

( )( ) ( )
( )2

2 2 2

t * * t *Y I - J I - J Y Y I - J Y
~E

SS
n k

  
= = −  

Since ( )*I J− = − =   0 . 

 

Now if *μ= then  
1*J J
n

 
− = 

 
 =  −  0    and  

 

( )2

2 2 2

1 1 1

1

t * * t *
Y J - J J - J Y Y J - J Y

~A
SS n n n

k
  

    
    
    = = −

 
From D1 they are also independent. 

 

A result that is useful for evaluating the expected sum of squares under various assumptions is 

the following.   

 

D2. Assume ( )E Y =   and ( )Y VCov = . Let A
n×n

 be symmetric. Then 

( ) ( )Y AY AV At tE tr= +   . 

Proof. 

( ) ( )( )Y A Y
t

E − −  = ( ) ( )t tY AY AY Y A A Y AY At t t tE E− − + = −       

Therefore ( )Y AYtE = ( ) ( )( )Y A Y
t

E − −  t A+   

                                       = ( ) ( )( )( )Y A Y
t

E tr − −  t A+   

                                       = ( )( )( )( )A Y Y
t

E tr − −  t A+   

                                       = ( )( )( )A Y Y
t

tr E − −  t A+   

                                       = ( )AVtr t A+   
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What happens with 
ASS if the expected values are not equal or if  *  . 

 

Since 
1

A
SS

n

 
=  

 

t *Y J - J Y we have 

 
1 1

AE SS tr * *
n n

    
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 

 

 
Testing of hypothesis 

 

Now let  

 

0 1 2 kH     with alternative hypothesis 1 : at least two means are differentH  

Equivalently it can be stated as  

                0 1 2 0kH      against 1 : at least one  0iH .  

 

Since 
2

ESS


is 

2 n k  and 
2

ASS


is 

2 1k under 0H  

It follows that under 0H  : 1
A E

k- ,n-k2 2

SS SS
F = ~ F

k-1 n- k 
 

We reject  0H  if 1obs a,k- ,n-kF f  

 
The necessary information is normally collected in an analysis of variance table:  

 
 
 

Source SS DF MS F 

 

Treatment 
2

1

k

A i i .

i=

SS n y - y ..  
 

k-1 

 

1ASS k-  1
A ESS SS

k- n- k
 

 

Error 
2

1 1

ink

E ij i .

i= j=

SS y y  
 

n-k 

 

ESS n- k  

 

 

Total 
2

1 1

ink

T ij ..

i= j=

SS y - y  
 

n-1 
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Example. Let us now try to analyze our example. Note that in order to ensure independent 

observations all the 29 experiments should be done in completely randomized order.  A 

boxplot is given below. This indicates a possible outlier for type A, but it is not extreme. The 

variation width for the five types of filters seem to vary. However, the number of observations  

are rather few.  From the boxplot it seems like filter E has a longer life-time than the others 

and maybe filter C has the shortest life time. 

 
 

 
 
To get an estimate for the five different means we can do the following  

 
> mod1=lm(y~type -1, data=filter) 

> summary(mod1) 

 

Call: 

lm(formula = y ~ type - 1, data = filter) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-107.18  -31.58   10.12   36.60   65.72  

 

Coefficients: 

      Estimate Std. Error t value Pr(>|t|)     

typeA   249.50      20.88  11.950 1.36e-11 *** 

typeB   188.30      20.88   9.019 3.55e-09 *** 

typeC   149.88      20.88   7.179 2.03e-07 *** 

typeD   257.83      20.88  12.349 6.89e-12 *** 

typeE   392.18      22.87  17.147 5.70e-15 *** 

 

The only valuable output here is the first column giving us the means.  

The one-way analysis of variance is obtained by the following command.  
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> summary(aov(y~type,data=filter)) 

            Df Sum Sq Mean Sq F value    Pr(>F)     

type         4 182818   45705  17.474 7.724e-07 *** 

Residuals   24  62774    2616                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

The F-value is highly significant indicating that the five types of filters vary in efficiency.  

 

 

Checking the model 

 

The assumption for the model need to be checked in order for our analysis to be trustworthy.  

 

Let 
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Deviation between the model and the data can be revealed by checking the residuals given by: 

 

                             ij ij ij i .
ˆy y y y  

 

The following should be performed 

 

1. Normal-plot of residuals  (check for deviations from the normal distribution).  

2. Box-plot of residuals (check for outliers) 

3. Group wise box-plot  (Check which group deviations are in) 

4. Plot of residuals against i .y  

5. Plot of residuals against the order the experiments are conducted (look for pattern,  

    correlation) 

 

A normal-plot is shown below. It does not reveal any serious deviations from a straight line. 
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Below is a plot of residuals against fitted values. For some types the residuals seem to vary 

more than for others, but the differences do not seem to large.   
 

> plot(mod1$fit,mod1$residuals) 
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Multiple comparisons 

 

If  0 1 2 kH      is rejected we have found differences between expected values, 

but we don’t know how they differ from each other. A useful tool for investigating this is 

pairwise comparisons. 

 

LSD-method (Least significant difference) 

 

Make confidence intervals for i j  , 
1 22

1 1
ij i . j .

,n-k
c y y t s

n n


 

There are 
2

k
such intervals.  If ijc does not cover 0, we have ”proven” that  i  and j differ. 

 

Bonferroni’s method 

 

The method above has proven to be useful together with the F-test, but one should be aware 

of the following. 

Let 0 1 2 kH     with alternative hypothesis 1 : at least two means are differentH  
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Let ijc be the event that ijc covers 0. 1ijP c  if 
0H  is true. Then 

2
12 13 1 1

k

k- ,kP c c c   if we can assume independence between intervals and  

2reject 1 1
2

k

0

k
P  H    . Therefore the significance level in pairwise 

comparisons is often modified. Bonferroni’s method suggest we should use the significance 

level 
2

k
  i.e substitute 

2
,

t


 with 

2
2

,
k

t 


in the confidence intervals for comparing two and 

two means. This works well if k is not too large. But the assumption about independence 

between intervals is not realistic. 

 

Tukey’s test. 

 

When performing Tukey’s test we substitute 
2

,
t


with 

2

q ,k, 
, Table A12, page 768 in 

WMMY. The method is exact if, i.e. 12 13 1 1k- ,kP c c c   if 1 2 kn = n = n . 

 

 

 

For the filter data Tukey’s test give the following results:  

 
> TukeyHSD(aov(y~type, data=filter) 

+ ) 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = y ~ type, data = filter) 

 

$type 

          diff        lwr       upr     p adj 

B-A -61.200000 -148.18821  25.78821 0.2640093 

C-A -99.616667 -186.60488 -12.62846 0.0192815 

D-A   8.333333  -78.65488  95.32154 0.9985086 

E-A 142.680000   51.44600 233.91400 0.0009770 

C-B -38.416667 -125.40488  48.57154 0.6930953 

D-B  69.533333  -17.45488 156.52154 0.1625944 

E-B 203.880000  112.64600 295.11400 0.0000077 

D-C 107.950000   20.96179 194.93821 0.0099683 

E-C 242.296667  151.06266 333.53067 0.0000004 

E-D 134.346667   43.11266 225.58067 0.0019024 

 

Filter E seem to be significantly better than all the others and filter A and D is significantly 

better than C.  

 

The randomized complete block design 
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In one-way analysis of variance, heterogeneity in experimental units can be so large that it is 

difficult to detect differences among populations. One way to obtain homogeneous conditions 

is by blocking.  

Another way to express it is as follows. When you know or suspect there are specific sources 

that causes undesirable change in the observed values, you may reduce or eliminate their 

effects by the use of what is called blocking.  

 

 

 

 

An example 

 

Four different machines 1 2 3 4M ,M ,M  and M are being considered for the assembling of a 

particular product. It was decided that six different operators would be used in an experiment 

to compare the machines. The response is the amount of time required to assemble a product. 

The operation of the machines requires physical dexterity, and it was anticipated that there 

would be a difference among the operators in the speed with which they operated the 

machines. This difference causes undesired variability in the measured response which would 

be of interest to eliminate. Therefore it was decided to perform the experiment as a 

randomized block design, with operators as blocks. The experiments will now be randomized 

within blocks. The observed data are given below:  

 

 Machines 

Operators 
1M  2M  3M  4M  

1 42.5 39.8 40.2 41.3 

2 39.3 40.1 40.5 42.2 

3 39.6 40.5 41.3 43.5 

4 39.9 42.3 43.4 44.2 

5 42.9 42.5 44.9 45.9 

6 43.6 43.1 45.1 42.3 

 

A model for the randomized block design is : 

 

                        

20  and independent

1 2  =1,2, ,
ij ij ij

N ,
Y

j , , ,b, i k


   

where b is the number of blocks and i is the number of observations within each block.  

 

Now define 

                   
' ' '

ij i j     

Then   

                   
' ' ' ' ' ' '

ij . . i . j .         

where 

                       
11  and 

bk
''
ji

j' 'i
. .

k b



   

Define  
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                        ' ' ' ' ' ' '

. . i i i j j ., ,           

We get     

20  and independent

1 2  =1,2, ,
ij i j ij

N ,
Y

j , , ,b, i k


     

where   
1 1

0
k b

i j

i j

   

 

Partitioning of variation 

 

 

Let us write ij .. i . .. ij i . .. i . .. . j .. ij i . . j ..Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  

 

Where 
1 1 1 1 1 1

1 1 1 1 1
  and 

b k b k b

i . ij . j ij .. ij i . . j

j i j i j

Y Y , Y Y Y Y Y Y
b k kb k b

k

i

 

 

From a one-way anova partitioning we have:  

2 22

1 1 1 1 1 1

- + +
k b k b k b

ij .. i . .. . j .. ij i . . j ..

i j i j i j

Y -Y Y -Y Y Y Y -Y -Y Y  and 

2 2 2

1 1 1 1 1 1 1 1

- + + + 2 +
k b k b k b k b

. j .. ij i . . j .. . j .. ij i . . j .. . j .. ij i . . j ..

i j i j i j i j

Y Y Y -Y -Y Y Y -Y Y -Y -Y Y Y -Y Y -Y -Y Y  

 

The last sum can be written as  

1 1 1 1

2
k b k b

. j .. ij . j . j .. i . ..

i j i j

Y -Y Y -Y Y -Y Y -Y  

Both expressions are 0 and we get:   

 
2 2 22

1 1 1 1 1 1 1 1

- +
k b k b k b k b

ij .. i . .. . j .. ij i . . j ..

i j i j i j i j

Y -Y Y -Y Y Y Y -Y -Y Y or 

T A B ESS = SS +SS +SS  which we read as  

Totals sum of squares =Treatment sum of squares + Sum of squares due to blocks + Error 

sum of squares. 

We now want to find the projection matrices such that 
ASS  and 

ASS can be expressed as a 

quadratic form by means of these matrices.  

      

Assume 
( )20  

1 2 1 2

,

, , , , , , ,
ij i j ij

N and independent
Y

j b i k


   


= + + + 

= =

 and in the definition of Y  in (1) let 

1 2
.

k
n n n b= = = =  Let the matrices *J and **J be defined as follows: 

 

0 0

0 01

0

0 0 0

*

J

J
J

J

b

b

b n n

b



 
 
 =
 
 
 

where  

1 1

1 1

J
b

b b

 
 

=
 
  

and  
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1**

I I I

I I I
J

I I I

b b b

b b b

b b b n n

k



 
 
 =
 
 
 

where I I
b b b

=  

 

Then * *J J = *J , ** **J J = **J , *J J = **J J = J  and ** *J J =
1

J
n

.  

This gives that the matrices 
1 1 1

,   and * * ** * **
I J J J , J J I J J J

n n n
− − − − − +  are idempotent  

and 
1 1* ** *I J J J J J
n n

  
− − + − =  

  
0  

Further define 

11

1

1

b

k

kb









 
 
 
 
 

=  
 
 
 
 
 

  

Then 
1* **I J J J
n

 
− − + = 

 
 0  and 

1* **I J J J
n

 
− − + 

 
 has 

rank ( ) ( ) ( ) ( )( )
1

tr tr tr tr 1 1 1 1= n - k - b bk - k - b b k
n

 
− − + = + = + = − − 

 

* **I J J J . 

Hence ( )( )( )2

2 2

1

1 1

t * **
Y I J J J Y

~E
SS n

b k
 

 
− − + 

 = − −  always. 

 

Now assume 
1 2

0
k

  = = = = . Then also  
1*J J
n

= 
 

− 
 

  and  

( )2

2 2

1

1

t *

A

Y J J Y

~
SS n

k
 

 
− 

 = −  

Thereby 

( )( )

( )( )1  is F distributed with -1 and 1 1

1 1

A

E

SS

k -F = k k b
SS

k - b -

− −  degrees of freedom.  

 

 

We have 2

2
1 1ESS

~ b k


 always. 

Now assume 0 1 2: 0kH     
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Then we also have 2

2
1ASS

~ k


 and 
1 1 1

1 1 1
A E

k , b k

SS SS
F ~ F

k b k
 

We reject 
0 1 2: 0kH     and conclude 

1 : at least two are different from zeroH if  

1 1 1
1 1 1

A E
obs , k , b k

ss ss
F f

k b k


 

Note that BSS is also a quadratic form, but since the randomization is within blocks and not 

complete we don’t test for block effects. 

We normally collect the necessary information in an analysis of variance table. 

 
Sources SS DF MS F 

 

Treatment 
2

1

k

A i . ..

i

SS b y y  
 

k-1 

 

1ASS k  1 1 1
A ESS SS

k b k

 

 

Block 
2

1

b

B . j ..

j

SS k y y  
 

b-1 

 

  
1BSS b  

 

 

Error 
2

1 1

k b

E ij i . . j ..

i j

SS y y y y

 

 

(b-1)(k-1) 

 

1 1ESS b k

 

 

 

Total 
2

1 1

k b

T ij ..

i j

SS y y  
 

bk-1 

  

  

Note that if some of the i and j are different from zero we have:  

2

1

1
n

2

A i

i

E SS k b   and 

2 2

1

1
n

B j

i

E SS b k 
 

You should also be aware of that if we compare the sum of squares for a one-way analysis of 

variance and a randomized block design we have 
one-way block

E E BSS SS SS= + showing that by 

blocking the experiment we may extract unwanted variation from the data at the expense of 

loosing some degrees of freedom.   

If there had been a complete randomization between machines and operators we could have 

tested on both factors. We would then have a two-way anova without replicates.  

 

Analysis of the example. 

A boxplot of assembly time is given below. Apparently there is not much difference between 

the assembly times.  
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Performing a one-way analysis of variance, neglecting that the experiment is blocked we 

obtain:  
            Df Sum Sq Mean Sq F value Pr(>F) 

Machines     3 15.925  5.3082  1.6101 0.2186 

Residuals   20 65.935  3.2968  

The p-value is 0.22, and the analysis does not support any differences between the machines 

Now let us take into account that the experiment is conducted as a randomized block design. 

A boxplot for the operators is given below:  

 
Let us calculate the means:  
> mod1=lm(y~Machine -1, data=machine) 
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> summary(mod1) 

Call: 

lm(formula = y ~ Machine - 1, data = machine) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-2.3667 -1.4458 -0.3083  1.3000  2.6667  

 

Coefficients: 

           Estimate Std. Error t value Pr(>|t|)     

Machine M1  41.3000     0.7413   55.72   <2e-16 *** 

Machine M2  41.3833     0.7413   55.83   <2e-16 *** 

Machine M3  42.5667     0.7413   57.42   <2e-16 *** 

Machine M4  43.2333     0.7413   58.33   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 1.816 on 20 degrees of freedom 

Multiple R-squared: 0.9985,     Adjusted R-squared: 0.9981  

F-statistic:  3230 on 4 and 20 DF,  p-value: < 2.2e-16 

 

> mod2=lm(y~Operator -1, data=machine) 

> summary(mod2) 

 
Call: 

lm(formula = y ~ Operator - 1, data = machine) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-2.5500 -1.1500 -0.0875  1.1000  2.2750  

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

Operator o1  40.9500     0.7432   55.10   <2e-16 *** 

Operator o2  40.5250     0.7432   54.52   <2e-16 *** 

Operator o3  41.2250     0.7432   55.47   <2e-16 *** 

Operator o4  42.4500     0.7432   57.12   <2e-16 *** 

Operator o5  44.0500     0.7432   59.27   <2e-16 *** 

Operator o6  43.5250     0.7432   58.56   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 1.486 on 18 degrees of freedom 

Multiple R-squared: 0.9991,     Adjusted R-squared: 0.9988  

F-statistic:  3215 on 6 and 18 DF,  p-value: < 2.2e-16 

 

We observe that the variation between the averages in each block is much larger than the 

variation between the averages of the machines.  

The analysis of variance table for the randomized complete block design is given below:  
> lmmachine=lm(y~Machine+Operator, data=machine) 

> anova(lmmachine) 

Analysis of Variance Table 

 

Response: y 
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          Df Sum Sq Mean Sq F value   Pr(>F)    

Machine   3 15.925  5.3082  3.3388 0.047904 *  

Operator   5 42.087  8.4174  5.2944 0.005328 ** 

Residuals 15 23.848  1.5899                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

When the variation due to the blocks is taken out, there is a significant difference between the 

machines on a 5% level of significance.  

Note that for the randomized complete block design the residuals are ij i . . j ..y y y y  and 

the fitted values are i . . j ..y y y The normal plot indicates no serious deviation from a straight 

line.  

-2 -1 0 1 2

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

 
From the boxplot below there is now apparent sign of outliers in the residuals 
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If outliers were detected one should proceed and plot (boxplot) the residuals against machines 

and blocks in order to find out where the outliers are located, and thereby possibly be able to 

explain suspicious observations.  

 

 

The plot of residuals against fitted values reveals no serious violation of assumptions. 

40 41 42 43 44 45
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Two-factor analysis of variance with replication 
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Situation. We have two-factors A and B. A has a levels and B has b levels. By doing 

replication it is possible to study interactions between the factors.  The experiment should be 

completely randomized, i.e. all the abn experiments, where n is the number of replicates, 

should be performed in random order. 

Model : 

20  and independent

1 2  =1,2, , , =1,2, ,
ijk i j ijkij

,
Y

i , , ,a, j b k n

N 
      

Here 
i is the effect of the i-th level of factor A, j is the effect of the j-th level of factor B 

and 
ij

 is the interaction between the i-th level of factor A and the j-th level of factor B. 

Also 
1 1 1 1

0
a b a b

i j ij ij
i j i j

     

The following hypothesis are of interest : 

1. 1 2 1: 0   : at least one is different from 0. 0 aH H    

2. 1 2 1: 0   : at least one is different from 0. 0 bH H    

3. 11 12 1: 0   : at least one is different from 0. 0 abH H    

 

Partitioning variation 

 

We have ijk ij . ijk ij .Y Y Y Y  

Now ij .Y  is the average for the replicated values when factor A is on level i and factor B on 

level j and may be written in the same way as ijY for the unreplicated two-way anova or the 

randomized complete block design. Thereby 

ij . ... i .. ... . j . ... ij . i .. . j . ...Y Y Y Y Y Y Y Y Y Y  

We have  

  and i i .. ... j . j . ... ij . i .. . j . ...
ij

ˆ ˆˆ Y Y , Y Y , Y Y Y Y   . 

From this we obtain 

ijk ... i .. ... . j . ... ij . i .. . j . ... ijk ij .Y Y Y Y Y Y Y Y Y Y Y Y  

Obviously ijk ... ij . ... ijk ij .Y Y Y Y Y Y  and since  

1 1 1

0
a b n

ij . ... ijk ij .

i j k

Y Y Y Y  we can use the partitioning from the randomized block 

design to obtain:  
2 2 2 22

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a b n a b n a b n a b n a b n

ijk ... i .. ... . j . ... ij . i .. . j . ... ijk ij .

i j k i j k i j k i j k i j k

Y Y Y Y Y Y Y Y Y Y Y Y  

or 

 T A B AB ESS = SS +SS +SS +SS  

Using the formula for the expectation of quadratic forms we obtain:  
2

1

1 a
2

A i

i

a
E SS b n

n


  

2

1

1 a
2

B j

i

b
E SS a n

n


  



 48 

2

1 1

1 1 a b
2

AB ij
i j

a b
E SS n

n


  and  

21EE SS ab n   

 

The necessary information from a data analysis is often collected in an analysis of variance 

table. 

Sources SS DF MS F 

 

A 
2

1

a

A i .. ...

i

SS nb y y  
 

1a  1

ASS

a
 A

E

MS
F =

MS
 

 

B 
2

1

b

B . j . ...

j

SS na y y  
 

1b  1

BSS

b
 B

E

MS
F =

MS
 

 

Interaction 

AB 

2

1 1

 
a b

AB ij . i .. . j . ...

i j

SS n y y y y

 

 

1 1a b  1 1

ABSS

a b
 AB

E

MS
F =

MS

 

 

Error 
2

1 1 1

a b n

E ijk ij .

i j k

SS y y  
 

1ab n  1

ESS

ab n
 

 

 

Total 
2

1 1 1

a b n

T ijk ...

i j k

SS y y  
 

1abn  

  

 

Before testing for eventual significance of main effects we should always test if there are 

interactions. If there are interactions between the factors, it means that the effect of at least 

one of the levels of factor A is dependent on the level of factor B. In such situations an 

interaction plot will be useful in order to interpret the effect of the factors. 

An interaction plot is a plot of ij .Y against the level of factor B (or A). If there are no 

significant interactions, one interpret the effects of the factors in a normal way. It is usual to 

use 
1

ESS

ab n
 as an estimate for the variance of the error in any case.  

Example 

We want to find what effect 3 types of plate materials and 3 different temperatures 050 C, 
065 C, 085 C have on the life time of batteries.  Is there a choice of material that would give 

uniformly long life time regardless of temperature?  The data are given below.  Note that we 

have four replicates for each level combinations. 

 

  Temperature   

  050 C 065 C 085 C 

 M1 130  155   74  

180 

  34   40   80   75  20    70   82   58 

Material M2 150  188 159  

126 

136 122 106 115 25    70   58   45 

 M3 138  110 168  

160  

174 120 150 139 96  104   82   60 

 

 

Some useful plots are shown below:  
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> pairs(battery) 

time

1.0 1.5 2.0 2.5 3.0

50
10

0
15

0

1.
0

1.
5

2.
0

2.
5

3.
0

temp

50 100 150 1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

material

 
Apparently the life time of batteries decreases with temperature while it is hard to discover 

any effect of  material from these plots. This may be due to that the variances seem to be a 

little bit higher for material 1 and 2. Let us construct the boxplots for life-time against 

material and temperature.  

 
> par(mfrow=c(1,2)) 

> boxplot(time~material, data=battery) 

> boxplot(time~temp,data=battery) 
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Now there also seems to be differences between the materials. 

Let us investigate if there is some indication of interactions.  
> interaction.plot(battery$temp,battery$material,battery$time) 

 

 
 

We could also construct a box-plot for all the nine level combinations. That will provide the 

same information and some insight into if the variances differ from one level combination to 

another. 
> boxplot(time~material*temp,data=battery)  

 
 

The analysis of variance table can be produced as follows:  

 
> lmtime=lm(time~material*temp,data=battery) 
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> anova(lmtime) 

Analysis of Variance Table 

Response: time 

              Df Sum Sq Mean Sq F value    Pr(>F)     

material       2  10684  5341.9  7.9114  0.001976 **  

temp           2  39119 19559.4 28.9677 1.909e-07 *** 

material:temp  4   9614  2403.4  3.5595  0.018611 *   

Residuals     27  18231   675.2                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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One of the residuals seems to be a little bit large in absolute value. Part from that it does not 

seem to be serious violations of the assumptions. 

For the interpretation the following table of cell averages is useful. 
> attach(battery) 
> tapply(time,list(material,temp),mean) 

       T1     T2   T3 

M1 134.75  57.25 57.5 

M2 155.75 119.75 49.5 

M3 144.00 145.75 85.5 
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                           Box-plot of the residuals does not reveal any outliers. 

 

Since there are interactions between the two factors the interpretation would not be that life 

time of battery decreases with temperature and increases with material type going from 

material M1 to material M3. In fact the longest life-time is obtained with material M2 and a 

temperature of 050 C while material M3 seem to provide about the same life-time for both 
050 C and 065 C and thus has some robustness properties.  

 

Random effects models 

 

Situation: The situation is the same as for a one-way anova, but the k treatment are chosen 

randomly from a set of treatments. The aim of the analysis is now to say something about the 

whole population of treatments while doing a one-way anova with fixed effects we are only 

investigating those treatments that are included in the experiment.  

Examples: k animals are randomly chosen 

                  k laboratories are randomly chosen 

                  k machines are randomly chosen 

 

Model 

20  and independent

1 2  =1,2, ,
ij i ij

N ,
Y A

i , , ,k, j n


   

20i aA ~ N ,  

As for one-way anova we have:  

                               ...... iijiij YYYYYY −+−+=
 

and 

                   

2 2 2

1 1 1 1 1 1

k n k n k n

ij .. ij i . i . ..

i j i j i j

Y Y Y Y Y Y  

Which may be written as : T E ASS = SS SS  
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With 

11

1

21

2

1

n

n

k

kn

Y

Y

Y

Y

Y

Y

Y  we have 
1t *

ASS
nk

Y J J Y  where 

1
0 0

1
0 0

1
0 0

n

* n

n

n

n

n

J

J
J

J

 

Now 

2 2 2 2

2 2 2 2

2 2 2 2

0 0

0 0
 where 

0 0

n a a a

n a a a

n

n a a a nxn

Cov

   

   

   

V

V
Y V V

V

 

Therefore  we get 

2 2 2 2 2 21 1 1
= 1t * *

A a a aE SS tr tr tr tr nk k n nk k n
nk nk nk

     AV A J J V J V JV   

since =0A . 

and 

 2 2 2 2 21* *

E a aE SS tr tr tr nk nk k k n    I J V V J V  

Now define 

1

1

*

k

k

A

A

A

A

 
 
 
 
 

=  
 
 
 
 
 

A and 

11

1

1

n

k

kn









 
 
 
 
 
 
 
 
 
 
 

ε = .   

We then have ( ) ( )( ) ( )* * * *− − + + = −I J Y = I J A I J    

and thereby 
( ) ( )

( )( ) ( )( )
* *

2 * 2

2 2 2
~ 1 .

t t

ESS
rank k n 

  

− −
= = − −

Y I J Y I J
I J

 
  

Now assume 
2 0 =
A

. The matrix V becomes diagonal and 11, , knY Y are independent.  Since 

1

nk

 
− 

 

*J J =   we get ( )2

2 2

1

1

t *

A

Y J J Y

~
SS n

k
 

 
− 

 = −  

The analysis of variance table becomes 

 

Soures SS DF MS F E[MS] 

 

Treatment 
2

1 1

k n

A i . ..

i j

SS y y  
 

k-1 

 

1ASS k  1 1
A ESS SS

k k n
 

2 2

an   
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Error 
2

1 1

k n

E ij i .

i j

SS y y  
 

k(n-1) 

 

1ESS k n  

  
2  

 

Total 
2

1 1

k n

T i j ..

i j

SS y y  
 

nk-1 

   

 

The null hypothesis is  
2 2

0 1: 0    : 0a aH H   

 

Reject  
0H  if 

1 1, k ,k n
F f


. 

2

1

ESS
ˆ

k n
  and 2

1 1
A E

a

SS SS

k k n
ˆ

n


 

 

  

 

 

 

 

 

 

 

Example 

 

It is of interest to find out if operators have any influence on the output from a machine. 4 

operators are randomly chosen and each operator is allowed to run the machine four times. 

The data are given below: 

   Operator       

1 2 3 4 

175.4 168.5 170.1 175.2 

171.7 162.7 173.4 175.7 

173.0 165.0 175.7 180.1 

170.5 164.1 170.7 183.7 

 

 
> lmoper=lm(Output~Operator, data=oper) 

> anova(lmoper) 

Analysis of Variance Table 

 

Response: Output 

          Df Sum Sq Mean Sq F value   Pr(>F)     

Operator   3 371.87 123.957  14.906 0.000238 *** 

Residuals 12  99.79   8.316                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The analysis of variance table shows a significant variation in the output from operator to 

operator.  
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The estimated variance between operators is 2 123 957 8 316
28 91

4
a

. .
s .

−
= =  

 

 

You have now been introduced to basic concepts and analysis methods in analysis of 

variance. There is much more to learn. The following books can be useful in further 

exploration of the topic.  

 

Box, G. E. P., Hunter, J. S. & Hunter, W. G.: Statistics for Experimenters (1978, 2005) 

Montgomery, D. C.: Design and Analysis of Experiments (2007, 7th edition) 

Wu, C. F. & Hamada, M.S.: Experiments, Planning, Analysis, and Optimization (2009, 2 th 

edition) . 

 

 

 

 

 

 

 

 

 


