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1a)
H0: µ = 3.5, H1: µ < 3.5.
Data are assumed to be independent and identically distributed Xi ∼

N(µ, σ2), i = 1, . . . , 11.
We estimate σ2 by s2 = 1

11−1
∑11
i=1(xi − x̄)2 = 0.5182. We have x̄ = 3.4.

t = x̄− 3.5
s/
√

11
= −0.1

0.156 = −0.64.

Here, t10,α = −1.81, which is much smaller than t, so we do not reject
H0. The p-value is P (t10 < −0.64) = 0.27.

1b)
The sign test test if the median of the data is 3.5. There are no parametric

assumptions and none about symmetry of the distribution.
Y = ∑11

i=1 I(xi < 3.5) = 8.
The binomial distribution, under H0, says that the number of samples

below 3.5 should be binomial distributed with parameters p = 1/2 and n = 11
trials.

p-value = P (Y ≥ 8) =
11∑
k=8

11!
(11− k)!k!

1
211 = 0.113

The Wilcoxon sign-rank test has no assumptions about parametric dis-
tribution, but it assumes symmetry around the mean/median.

To do this test one must sort the distances in samples away from the
hypothesis mean 3.5 The ranks of the samples above 3.5 are : 4, 8 and
10.5 with a sum of W+ = 22.5. The rank sum of samples below are then
W− = 66− 22.5 = 43.5.

The normal assumption for rank-sums says thatW+ ∼ N(n(n+1)
4 , n(n+1)(2n+1)

24 ),
under H0. If the observed value is significantly small under this distribution,
we reject the hypothesis of the same mean in the new brand.

Here, with n = 11, Z = 22.5−33√
126.5 = −0.93. We have p-value = P (Z <

−0.93) = 0.18. This is not very small, and we cannot reject H0. In fact the
p-value is larger than for the sign-test because we have some large value (4.1
and 4.4) in the data.
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2a)
The hypotheses are: H0 : p1 = p2, H1 : p1 < p2.
Using normal approximation;

Z = p̂1 − p̂2 ∼ N(p1 − p2,
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
)

Assuming p1 − p2 = 0 in the mean, and using a pooled estimate of p in the
variance, we have

Z = p̂1 − p̂2√
p̂(1− p̂)(1/n1 + 1/n2)

We reject H0 if Z < zα = −1.64.
From the data we have p̂1 = 3/10 = 0.3 and p̂2 = 6/11 = 0.545, and

p̂1 − p̂2 = −0.245. p̂ = (3 + 6)/(10 + 11) = 0.43.
Z = −0.245√

0.0468 = −1.13. This means we do not reject H0.
If we do not pool the variance estimate we get: v =

√
0.3 · 0.7/n1 + 0.545 · 0.455/n2 =

0.208, and overall a similar conclusion: Z = −0.245
v

= −1.18.

2b)
Power is the probability of rejecting a hypothesis H0 when it is not true:

P (rejectH0|H1) = P (Z < zα|p1 < p2). The power will depend on the differ-
ence p1− p2 < 0. If this difference is very close to 0, the power is close to the
significance level of the test. If this distance is much less than 0, the power
goes towards 1. If the numbers of samples n1 and n2 increase, the power gets
larger as it becomes easier to detect the difference.

For this case we have p1 − p2 = −0.2. Assuming the same variance es-
timate in the denominator, we define v =

√
0.3 · 0.7/n1 + 0.545 · 0.455/n2 =

0.208

P (rejectH0|H1) = P (Z < zα|p1 < p2) = P (Z < zα−
−0.2
v

) = P (Z < −0.681) = 0.248

.
To achieve a power of 0.5 we need

P (rejectH0|H1) = P (Z < zα −
−0.2

v(n1, n2)) = 0.5

. Then we must have v(n1, n2) = 0.2/1.64 = 0.12. That means that

v(n1, n2) =
√

0.3 · 0.7/n1 + 0.545 · 0.455/n2 = 0.12.
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Here, we can increase both n1 and n2, or one of them more than the
other. By trial and error: n1 = 30 and n2 = 33 gives v(n1, n2) = 0.1214,
n1 = 20 and n2 = 60 gives v(n1, n2) = 0.1210, n1 = 65 and n2 = 22 gives
v(n1, n2) = 0.1204.

3a)
H0 : µ1 = µ2 = µ3 = µ4. The alternative H1 is that at least one of the

group means is different from the rest.
The variability within groups is SSE = ∑k

i=1
∑n
j=1(yij − ȳi·)2 = 4900 +

5100 + 4600 + 5000 = 19600
The variability between groups is SSA = n

∑k
i=1(ȳi· − ȳ··)2, and with

ȳ·· = (128 + 136 + 157 + 141)/4 = 140.5, SSA = 4939.
We reject H0 is F = (SSA/3)/(SSE/40) > f0.05,3,40 = 2.84.
Here, F = 3.36 so H0 is rejected. There is significant difference in the

group means.

3b)
Define linear contrast µw = 0.5(µ1 + µ2)− 0.5(µ3 + µ4).
H0: µw = 0, H1: µw 6= 0.
We haveW = 0.5(Ȳ1·+ Ȳ2·)−0.5(Ȳ3·+ Ȳ4·) as an estimate for the contrast,

and its distribution is defined by

W ∼ N(µw,
1
4(4σ2/n) = N(µw, σ2/n)

Since we do not know σ2, this is estimated by s2 = SSE/40 = 22.12. We
then get a T distribution, and under H0: µw = 0, we have

T = W

s/
√
n
∼ t40

We reject H0 if |T | > t0.025,40 = −2.02.
With the above data, we have t = −17

22.1

√
11 = −2.55. We then reject H0.

4a)
The method of least squares minimize the sum of square errors from the

fitted model to the data:

SSE(β0, β1, β2) =
14∑
i=1

(yi − β0 − β1xi + β2x
2
i )2
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(β̂0, β̂1, β̂2) = argminSSE(β0, β1, β2)

The actual minimum is found by setting the derivatives equal to 0 and
solving the linear equations.

In Figure 1 it appears as if a quadratic function would systematically
go under the curve for intermediate small and intermediate large covariate
values. This means that the residual terms have a structure and might not
be independent nor identically distributed.

4b)
The regression parameter estimates would in this case with 14 data and 3

parameters be distributed according to β̂i−βi

si
∼ t11, where si is the standard

deviation of regression parameter i = 0, 1, 2.
A confidence interval starts by

P (t0.025,11 <
β̂1 − β1

s1
< t0.975,11) = 0.95,

and here t0.025,11 = −2.20, and t0.975,11 = 2.20. By moving around and getting
only βi in the middle, we have

P (β̂1 − s12.20 < β1 < β̂1 + s12.20) = 0.95

The interval is then (−15569,−7839).
The width of the confidence interval for β2 is 23906−7581 = 16325. Then

s2 = 16325/(2 · 2.20) = 3710.
The t-value is T = 15743/3701 = 4.25.

4c)
Setting SSE = SSE(β̂0, β̂1, β̂2), we have

S =
√
SSE/(n− 3)

as an estimate of the error standard deviation σ.

R2 = SSR

SSE
= 1− SSE

SST
,

where the sum of squares are SST = ∑14
i=1(yi− ȳ)2 and SSR = ∑14

i=1(ŷi− ȳ)2

with ŷi = β̂0 + β̂1xi+ β̂2x
2
i is the fitted regression model. The R2 ∈ (0, 100) %
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should be large for models where the regression terms really matter for the
prediction, compared with just using the mean value, without any covariates.

The prediction residual sum of squares (PRESS) is defined as the ∑14
i=1(yi−

ŷi,−i)2, where the prediction ŷi,−i is based on all data except (xi, yi). This
PRESS should be small, otherwise one is likely overfitting to data and not
necessarily predicting well for a hold-out test data set.

The PRESS is 40568 for the quadratic model while it is only 22823 for the
piecewise linear model. Moreover, the S is smaller for the piecewise model,
indicating less variability around the fitted line using all data as well. The
R2 is also larger for the piecewise linear model and it should be relatively
comparable since they have the same number of parameters (see also adjusted
and predictive R2).

4d)
In a forward selection one add one covariate at a time into the model.

Next, a check is conducted to see if another covariate should be added to the
model, and this continues for step 3. The covariate that explains the most
of the variability in the regression data is added, at each step. Here, xi is
added first, then (xi − c)I(xi > c) and finally x2

i at step 3.
The coefficient for poro (xi) changes because the model fitting is done

with more parameters in the model and the estimates from the least squares
method would then also depend on the non-zero value from the other param-
eters.

The forward selection goes through all three steps, and suggest a model
with xi, (xi − c)I(xi > c) and x2

i . Then again, at the last step, the poro
variable is not very significant (when the other two are involved). A model
with (xi − c)I(xi > c) and x2

i could hence also be a good fit, even though
this was not evaluated in the stepwise forward selection.
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