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Problem 1

A machine is inspected weekly in order to determine its condition. The condition
of the machine can be one of the following three states:

• 0: perfect

• 1: reasonable

• 2: broken

A machine in perfect condition is still perfect after one week with probability 0.7,
with probability 0.2 the state changes to reasonable. A machine in reasonable
condition is still reasonable after one week with probability 0.6, and broken with
probability 0.4. A broken machine is not working and cannot be repaired. It stays
broken.

a) • Formulate the transition matrix of a Markov chain that describes the
state of the machine, and draw the corresponding transition diagram.
• Determine the equivalence classes and decide which states are recurrent

and which states are transient? Justify your answer.

b) We start to observe a new machine this week, so that X0 = 0. Calculate:

• P (X3 6= 2, X1 6= 1|X0 = 0)
• P (X4 = 2|X2 = 0, X0 = 0)
• The probability that the machine will never be in state 1.

c) Assume again that we start to observe the state of the machine this week,
in which X0 = 0, and define a random variable

T = min{n ≥ 1 : Xn = 2}.

Describe two different strategies that can be used to find the expectation
E(T ).
Use ONE of these strategies to calculate the value of E(T ).
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Problem 2

Customers arrive at a shipping office according to a Poisson process with rate
λ = 3 per hour. Let N(t) denote the number of customers at time t. Let Ti denote
the time between the arrival of the i−1-th and i-th customer and let Sn = ∑n

i=1 Ti.

a) Find

• E(T2)
• P (N(1) = 3)
• E(S14|N(3) = 8)

b) The office opens at 8AM. What is the distribution of the amount of time the
clerk Oscar has to wait until his first customer arrives?
Assume, Oscar overslept and came in at 10AM. What is the probability that
no customers came in the two-hour period?

c) The office opens at 8AM. Assume that the arrival time of Oscar is uniformly
distributed between 8AM and 9:30AM. What is the expected number of
customers who arrive before Oscar is at his job?
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Problem 3

The restaurant chain “Shake Shack” is said to have excellent hamburgers in New
York City. There is one small stand in Madison Square Park. Assume there is
one server who prepares the food fresh for the customers. Customers arrive at the
queueing system according to a Poisson process with intensity λ = 20 (hour−1).
Suppose that a customer that finds n people in the queueing system upon its
arrival will only join the queueing system with probability

αn = 4− n
4 , n = 0, 1, 2, 3, 4

Customers that join the system are served in order of arrival and the service times
are assumed to be independent and exponentially distributed with a mean service
time equal to 3 minutes, i.e. rate µ = 20 (hour−1). Further, we assume that the
customer’s service time is independent of the arrival process.

Let X(t) denote the number of customers in the system (including the one that
might be under service) at time point t. Assume that X(0) = 0.

a) Explain why X(t) is a birth and death process and give the birth and death
rates.

In the remaining questions, first express the answers as functions of λ and µ.
Thereafter, compute the numerical answer for the parameter values given.

b) Starting at time 0, what is the expected time until X(t) = 2 for the first
time?
What is the probability that the first customer has departed the queueing
system before the next customer arrives?

c) Derive the limiting probabilities for X(t) and show that these are equal to

P0 = 32
103 P1 = 32

103 P2 = 24
103 P3 = 12

103 P4 = 3
103

d) In the long run:

- What is the probability that an arriving customer will join the queueing
system and not leave immediately?

- What is the expected number of customers in the queueing system.
- Use Little’s formula to compute the expected time a customer (who
decides to join the system) will totally spend in the queueing system?
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Formulas for TMA4265 Stochastic Processes:

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞i=1Bi) = 1. Then

P (A|C) =
∞∑
i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞∑
i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞∑
k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ P
(n)
ij exist and is given by

the equations
πj =

∑
i

πiPij and
∑
i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i,
sij , is

sij = δij +
∑
k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in
state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn(t) = λntn−1

(n− 1)!e
−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint
probability density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) = n!
tn

for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ =
{0, 1, 2, . . .}, is called a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t + s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are
death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s).

Limit relations
lim
h→0

1− Pii(h)
h

= vi , lim
h→0

Pij(h)
h

= qij , i 6= j

Kolmogorov’s forward equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑
k 6=j

qkjPk and
∑
j

Pj = 1.

In particular, for birth and death processes

P0 = 1∑∞
k=0 θk

and Pk = θkP0 for k = 1, 2, . . .

where
θ0 = 1 and θk = λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk
for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average
amount of time a customer spends in the system W , in the queue WQ; the service time
S; the average remaining time (or work) in the system V , and the arrival rate λa, the
following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗Q] + λaE[S2]/2.

Some mathematical series

n∑
k=0

ak = 1− an+1

1− a ,
∞∑
k=0

kak = a

(1− a)2 .


