TMA4267 Linear Statistical Models
 Compulsory Exercise Part 1: Multivariate random variables and the multivariate normal distribution

Due date: 3 February 2017 at 6pm
Upload pdf-file with handwritten solutions in Blackboard

Text in red added on January 27.

Problem 1

Assume that \boldsymbol{X} is a bivariate normal random variable with $\mathrm{E}(\boldsymbol{X})=\binom{0}{2}$ and
$\operatorname{Cov}(\boldsymbol{X})=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$. Let $\boldsymbol{C}=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ and $\boldsymbol{Y}=\binom{Y_{1}}{Y_{2}}=\boldsymbol{C} \boldsymbol{X}$.
a) Find the mean vector and covariance matrix of \boldsymbol{Y}.

What is the distribution of \boldsymbol{Y}.
Are Y_{1} and Y_{2} independent random variables?
b) Let $f(\boldsymbol{x})$ be the joint pdf for \boldsymbol{X}. Contours of $f(\boldsymbol{x})$ are the solutions to $f(\boldsymbol{x})=a$ for some constant $a>0$, or equivalently to

$$
\begin{equation*}
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=b \tag{1}
\end{equation*}
$$

for a corresponding constant $b>0$. In Figure 1 you see the graphical solution (black ellipse) to Equation (1) for $b=4.6$.
Explain what is the connections between properties of the covariance matrix $\boldsymbol{\Sigma}$, the chosen value of b and features of the figure (e.g. principal axes and half-lengths). Please make a drawing and/or mark where these features are on the printed figure.
What is the probability that a random observation \boldsymbol{X} from $f(\boldsymbol{x})$ will fall within the given ellipse?
The following information might be useful:

```
> sigma=matrix(c(3,1,1,3),ncol=2)
> sigma
    [,1] [,2]
[1,] 3 1
[2,] 1 3
> eigen(sigma)
$values
[1] 4 2
$vectors
\[
[, 1] \quad[, 2]
\]
```


Figure 1: Graphical solution to Equation (1).

```
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068
> qchisq(0.9,2)
[1] 4.60517
```


Problem 2

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a (univariate) random sample from some population. Define $\bar{X}=$ $\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
Futher, let 1 be an n-dimensional vector of 1 s . Then 11^{T} is an $n \times n$ matrix of 1 s . The matrix $\boldsymbol{R}=\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{T}$ is called the centering matrix.

$$
\boldsymbol{R}=\left[\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1-\frac{1}{n}
\end{array}\right]
$$

a) Show that $\bar{X}=\boldsymbol{A} \boldsymbol{X}$ where $\boldsymbol{A}=\frac{1}{n} \mathbf{1}^{T}$, and that $S^{2}=\frac{1}{n-1} \boldsymbol{X}^{T} \boldsymbol{R} \boldsymbol{X}$.

Hint: start by looking at the i th element of $\boldsymbol{R} \boldsymbol{X}$, and observe that \boldsymbol{R} is symmetric and idempotent.

Now, in addition assume that the random sample is taken from the univariate normal distribution with mean μ and variance σ^{2}. In the notation of TMA4267 we would let $\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{T}=\boldsymbol{X}$, and write $\boldsymbol{X} \sim N_{n}\left(\mathbf{1} \mu, \sigma^{2} \boldsymbol{I}\right)$.

In our first statistics course we met the T-statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

and were told that the T-statistic followed a t-distribution with parameter $n-1$ (named "degrees of freedom"), however we did not show that \bar{X} in the numerator and S^{2} in the denominator were independent (as is required for the t-distribution). With our new skills on the multivariate normal distribution we will do that now.
b) Show that $\boldsymbol{A R}=\mathbf{0}$. What does this imply about $\boldsymbol{A} \boldsymbol{X}$ and $\boldsymbol{R} \boldsymbol{X}$? How can you use this to conclude that \bar{X} og S^{2} are independent?

Finally, we have worked with quadratic forms, see Fährmeir, Kneib, Lang and Marx (2013): Theorem B. 8 on page 651. In the next question Theorem B.8.2 is useful: Let \boldsymbol{R} be a symmetric and idempotent matrix with $\operatorname{rank} r$, and $\boldsymbol{Y} \sim N_{p}(\mathbf{0}, \boldsymbol{I})$, then $\boldsymbol{Y}^{T} \boldsymbol{R} \boldsymbol{Y} \sim \chi_{r}^{2}$.
c) Use the fact that $S^{2}=\frac{1}{n-1} \boldsymbol{X}^{T} \boldsymbol{R} \boldsymbol{X}$, where \boldsymbol{R} is symmetric and idempotent, to derive the distribution of $\frac{(n-1) S^{2}}{\sigma^{2}}$. Hint: a similar problem is given in the TMA4267V2014 exam, Problem 1b.

