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                            Design of Experiments  
                                                          by 
                                         John Tyssedal, NTNU 
 
 Experimentation is an old discipline, but modern design of experiments theory dates 
back to the pioneering work of Ronald Aylmer Fisher (1890-1962) at the Rothamsted 
Experimental Station, where he became a statistician in 1919.  Rothamsted Experimental  
Station was an agricultural research institute. Fisher soon experienced the problems by trying 
to analyse haphazardly collected data and realized the advantage it would be to collect these 
in a planned and controlled manner. In 1935 he published his famous book Design of 
Experiments.  Surprisingly fast his ideas found its way into industry, but there they seemed to 
have an obstacle for success. Agricultural experiments tend to be large in scale, having 
several variables with many levels for each variable that needed to be replicated. And they 
may take a long time to complete. Experiments in industry can be expensive, thereby cost 
considerations need to be taken into account. On the other side, in contrast to agriculture 
where one sows in the spring and harvests in the autumn, experiments in industry often give 
immediate response and new experiments can be planned and performed the next week. In the 
late 1940s George Box (1919-2013) discovered that sequential experimentation, where in 
each step smaller experiments with few levels for each factors were performed, much faster 
could bring a production process closer to optimal operational conditions. The analysis of 
such designs also relies more heavily on regression modelling. So despite the evolution we 
will start with introducing the ideas for industrial experimentation first and then move on to 
more classic Design of Experiments theory.  

 
                            Two-level  factorial designs  
 
In the regression model  = +Y X β εβ εβ εβ ε  the design matrix X has a decisive impact on how easy 
it is to find a good model. Especially we have seen (chapter 12.7) that if the columns in the 
design matrix, 1 2 k, x , x , x…………1 , are  orthogonal, the vector of the estimators for the coefficients 
is given by:  
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 Orthogonal columns give minimum variance in the estimators for the coefficients.   
 
When an experiment is conducted we can choose values for the explanatory variables 

k21 x,,x,x … . One should choose these such that it is as favourable for the estimation as 
possible.  
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Example 1 
 
We want to investigate how the yield of chemical process depends on the two factors 
temperature and concentration. It was conducted four experiments where two values for each 
of the factors were used. This gives four possible level combinations of the two factors to test 
out the yield of the process. The experiment is given below where also the registered yield of 
the process is given.  
 
 

Experiment 
number  

Temperature Concentration Yield 

1 160 20 60 
2 180 20 72 
3 160 40 54 
4 180 40 68 

 
 
A model of the form ( ) 0 1 1 2 2 12 1 2E Y x x x xβ β β β= + + +  can then be estimated from the data 
where the four values for the yield are the observed response values and the design matrix X  
consists of a column of four ones, a column with the values for the temperature, one column 
with the concentration values and one with the values of the product of the temperature and 
the concentration values.  
 

                                         

1 160 20 3200
1 180 20 3600
1 160 40 6400
1 180 40 7200

 
 
 =
 
 
 

X  

 
 
 

A Regression Analysis in R of yield versus temperature (x1); concentration (x2) and 
temperature×concentration gave.  
 
 
Call: 
lm.default(formula = y ~ x1 + x2 + x1x2) 
 
Residuals: 
ALL 4 residuals are 0: no residual degrees of freedom! 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  -14.000         NA      NA       NA 
x1             0.500         NA      NA       NA 
x2            -1.100         NA      NA       NA 
x1x2           0.005         NA      NA       NA 
 
 

 
First we will only be concerned with the estimated coefficients 
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Let us now recode the factors by introducing new factors 1
1

170
10

xz −
=  and 2

2
30

10
xz −

= .  The 

values of the new factors are thus centred and we have divided down by half the distance 
between the high and the low levels of the factors.  
 
The new design matrix becomes:  
 

                                           

1 1 1   1
1   1 1 1
1 1   1 1
1   1   1   1

− − 
 − − 
 − −
 
 

 

 
Notice that the new design matrix has only orthogonal columns and if we now compute the 
estimated coefficients we get from (1) that  
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Controlling the calculations by R gives for the recoded values of temperature and 
concentration:  
 
 
Call: 
lm.default(formula = y ~ z1 + z2 + z1z2) 
 
Residuals: 
ALL 4 residuals are 0: no residual degrees of freedom! 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)     63.5         NA      NA       NA 
z1               6.5         NA      NA       NA 
z2              -2.5         NA      NA       NA 
z1z2             0.5         NA      NA       NA 
 
  

To check if we have the same model we may substitute for 21 z,z  and 
12

z which gives:  
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      ( ) ( ) ( )( )1 2 1 2170 30 170 30
63 5 6 5 2 5 0 5

10 10 10 10
x x x x

y
− − − −

= + − +
⋅

ˆ . . . .  

         = 63.5 110.5− +7.5+25.5+ 1 1 2 2 1 20 65 0 15 0 25 0 85 0 005x x x x x x− − − +. . . . .  
         = 14− + 1 2 1 20 5 1 1 0 005x x x x− +. . .  
 
When we are analyzing a two-level factorial design, it is normally simplest and most practical 
to recode the factor levels to 1 and –1 as above. Then we obtain orthogonal factor columns 
and it is simple to compute the coefficients.  
One other argument is that we often have qualitative variables as for instance we are going to 
test out two different brands or we want to test out what happens with or without any 
treatment. In the last case it is of interest to be able to measure the effect of the treatment on 
the response. Let the factor value 1 correspond to treatment and the factor value -1 correspond 
to no treatment. It is then of interest to calculate the average value of the response when the 
factor value is 1 and when the factor value is -1.  
 
Definition of main effect: 
 
For two-level designs we define the main effect of a factor as: Expected average response 
when the factor is on the high level – expected average response when the factor is at the low 
level.  
 
it is natural to estimate this effect by H Ly y−  and for temperature this becomes:  
                          

                                             1
72 68 60 54 13 2

2 2
b+ +

− = = *  

and for concentration  
 

                                              2
54 68 72 60 5 2

2 2
b+ +

− = − = *  

 
Estimated main effect of a factor will always be the corresponding main regression coefficient 
multiplied by 2, since a main effect measure change in the expected response when we move 
from the low-level, -1, to the high level, +1, of the factor or when the recoded factor changes 
two units. The regression coefficients, however, measure the change in the expected response 
when the factor changes from 0 to 1.  
 
In our example the coefficient in front of the 21xx  term, 12b , is small. This coefficient tells us 
if there is any interaction between the two factors or not.  
 
Definition 
 
The interaction between two factors is defined as: Half the main effect of a factor when the 
other is on the high level – half the main effect of a factor when the other factor is at its low 
level.  
 
To estimate the interaction between temperature and concentration we therefore need to 
compute:   
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Estimated main-effect of temperature when concentration is on its high level is given by:  
 
                                             68 – 54 = 14 
 
Estimated main-effect of temperature when concentration is on its low level is given by:  
 
                                             72 – 60 = 12  
  

The estimated interaction then becomes: 12
14 12 1 2
2 2

b− = = * . 

 
 
Signs for computing the contrasts.  
 
For two level experiments we have: All quantitative levels can be recoded to –1 and 1. All 
qualitative level can naturally be set to these values. If we agree upon that the high level of a 
factor corresponds to 1 and the low level corresponds to –1, we notice from above that 
estimation of effects can be done by adding together the response values with signs decided 
by the signs in the design matrix and thereafter divide by half the number of observations. We 
therefore construct a sign matrix where the necessary signs for computing the effects are 
given. In our case this matrix becomes:  
 
                                              

Temp Concentration Temp*Conc 
- - + 
+ - - 
- + - 
+ + + 

 
 
Other notation for level combinations.  
 
High level is marked with the letter for the factor. Low level is marked with 1. 1 is left out if 
other letters are used.  
 
Example:                  

A B Level code 
- - 1 
+ - a 
- + b 
+ + ab 

 
32 experiments. 

 
A k2  experiment has k factors, each at two levels. In example 1 our concern was a 22  
experiment and how we can estimate the effects in such an experiment. Actually there was a 
third qualitative factor in this experiment, catalyst. With three factors each at two levels it is 
possible to construct 8 possible level combinations of high and low or + and – as we normally 
recode the levels to. Let A be temperature, B concentration and C catalyst. Then we get the 
following sign matrix extended with level codes and response values.  
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A B C AB AC BC ABC levelcode y 
- - - + + + - 1 60 
+ - - - - + + a 72 
- + - - + - + b 54 
+ + - + - - - ab 68 
- - + + - - + c 52 
+ - + - + - - ac 83 
- + + - - + - bc 45 
+ + + + + + + abc 80 

  
 
Estimated main effects becomes: 
 

23
4

45525460
4

80836872Â =
+++

−
+++

=  

5
4

83527260
4

80456854B̂ −=
+++

−
+++

=  

5.1
4

68547260
4

80458352Ĉ =
+++

−
+++

=  

 
For computing the interaction between A and B, AB, we need to find the main effect of A 
when B is at its high level and subtract the main effect of A when B is at its low level and 
thereafter divide by two. This corresponds to adding together the response values with the 
same sign as in the column for factor A when B is at its high level and adding them together 
with the opposite sign of what is in column A when B is at its low level and thereafter divide 
by half the number of observations. This is equivalent to use a factor column for calculation 
of effects where the signs in the columns for factor A and factor B are multiplied together or 
the signs in the column for AB above. In the same we can compute the signs in the other two-
factor interaction columns. The signs in the column for the three-factor interaction ABC is 
obtained by multiplying together the signs in the columns for A, B and C. This gives  
 

5.1
4

45835472
4

80526860B̂A =
+++

−
+++

=  

10
4

45526872
4

80835460ĈA =
+++

−
+++

=  

0
4

54685283
4

72608045ĈB =
++++

−
+++

=  

5.0
4

68604583
4

72545280ĈAB =
+++

−
+++

=  

 
In R the analysis involves the function linear models.  
 
Call: 
lm.default(formula = y ~ (.)^3, data = plan) 
 
Residuals: 
ALL 8 residuals are 0: no residual degrees of freedom! 
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Coefficients: 
                      Estimate        Std. Error    t value    
Pr(>|t|) 
(Intercept)     6.425e+01         NA          NA           NA 
A1              1.150e+01         NA          NA           NA 
B1             -2.500e+00         NA          NA           NA 
C1              7.500e-01         NA          NA           NA 
A1:B1           7.500e-01         NA          NA           NA 
A1:C1           5.000e+00         NA          NA           NA 
B1:C1          -4.017e-15         NA          NA           NA 
A1:B1:C1        2.500e-01         NA          NA           NA 
 
and in order to obtain the estimated effects we have to multiply the coefficients with 2.  
 
  (Intercept)     A1             B1             C1                  
 1.285000e+02  2.300000e+01 -5.000000e+00  1.500000e+00  
  
   A1:B1         A1:C1        B1:C1       A1:B1:C1  
1.500000e+00 1.000000e+01 -8.033653e-15  5.000000e-01 
 
 
 
Evaluation of significant effects in unreplicated experiments 
 
The estimators for the effects are given by the following formula:  

n

i
i 1

2

iY
Effekt n

=

∂
=
∑

ˆ  where n  is the number of observations and iδ  is either 1 or –1 dependent on 

the signs in the columns for the effect we are calculating. Since all iY ,  1 2i n= , , ,…………  are 
independent we get: 
 

( )

n n
2 2

2i i
2 i 1 i 1
effekt 2 2

( ) 4 σ
4σσ

4

Var Y
Var Effekt

n n n

δ
= == = = =
∑ ∑

ˆ . 

 
If all the effects are zero and the data are normally distributed with the same variance, we get 

that all the estimators are
240  N

n
σ 

 
 
, . In a normal probability plot they should all be lying 

on a straight line. Those who fall off the line can be considered to be significant.  The 
motivation for this is as follows.  
 
Normalplot based on nscores. 
 
Such plots can be constructed as follows. Suppose we have n  independent observations 

1 2, , , nx x x…  that all come from the same distribution Let the ordered values of these 
according to algebraic size be: ( ) ( ) ( )1 2 nx ,x ,…,x . A direct estimate of their distribution function 

( )( ) 1 2iP X x , i = , ,…,n ≤ is given by i n . Theoretically it can be shown that  3 8
1 4i

iF
n
−

=
+

 is a 
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better choice. For the estimated effects from the 32  experiment with temperature, catalyst and 
concentration we can construct the following table:  
 
( )ix :     -5         0          0.5        1.5       1.5         10          23 

iF   :  0.086   0.224     0.362   0.500    0.638    0.776     0.914  

( )1
iF−Φ

 
- 1.37   -0.76    -0.35      0       0.35     0.76      1.37        

 
The motivation for the third row is as follows. For normal distributed data 

( )( ) ( )i
i

x u
F x

σ

− 
=Φ   

 
. It is therefore to be expected that ( ) ( )1 i

i

x
F

µ

σ
−

−
Φ ≈  such that a plot of  

( ) ( )1 i
i

x
F

µ

σ
−

−
Φ ≈   against ( )ix  approximately  becomes a straight line.  

 
 
A normal plot for the 32  experiment with temperature, catalyst and concentration is shown 
below:  
 

 
 
We notice that estimated effects of temperature and the interaction between temperature and 
catalyst clearly separate from the others.  
 
In the normal-plot a * is placed at those effects that are judged significant. The judgement of 
significance is done by means of Lenth’s method.  
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Lenth’s method. 
 
For a random variable ( )20~ ,Z N τ , the median of Z  approximately equals 0 675. τ  and 

hence ( )1 5 median of Z  1 5 0 675 1 0125. . . .τ τ τ⋅ ≈ ⋅ ≈ ≈ . Now let 1 2, , , mθ θ θ
⌢ ⌢ ⌢

…  be independent 

estimators of the effects obtained from orthogonal contrasts and let their variance be 2τ . An 
estimator for τ  is then given by:  
                              ( )1 5 Median 1 2. , , , ,i i mτ θ= ⋅ =

⌢⌢ …  
and a more refined estimator  
                              ( )1 5 Median : 2 5* . .i iτ θ θ τ= ⋅ <

⌢ ⌢⌢ ⌢  

For testing       0 1: 0     : 0i iH Hθ θ= ≠    

we use that *
iT θ

τ
=

⌢
⌢  is approximately t-distributed with 3m  degrees of freedom. If more 

accurate inference is needed, a table of critical values is given in the book Experiments, 
Planning, Analysis and Optimization by Hamada and Wu (2009), p 702.  
 
Using higher order interactions to test for significance of effects.  
 
Often it is assumed that three-factor and higher order interactions are zero. If the assumption 
is true, these can be used to estimate the variance of the effects. In a 42  experiment we can 
estimate 4 three-factor and one four-factor interaction. By averaging the five squared three-
factor and four-factor interactions, we get an estimate for the variance of the effects with 5 
degrees of freedom. This can be used in evaluating the significance of the effects. For 
instance, factor A is significant if  
 

5,
2
α

Â

t
s
Â

≥ . 

 
Example 
A 42  experiment in the four factors A =catalyst charge, B = temperature, C = pressure and D 
= concentration was performed in a process development study. The 16 experiments set up in 
standard form are shown below. Here also all the interaction columns are included.   
 
 
Row     A     B     C     D     AB    AC    AD    BC    BD    CD   ABC   ABD 
 
   1    -1    -1    -1    -1     1     1     1     1     1     1    -1    -1 
   2     1    -1    -1    -1    -1    -1    -1     1     1     1     1     1 
   3    -1     1    -1    -1    -1     1     1    -1    -1     1     1     1 
   4     1     1    -1    -1     1    -1    -1    -1    -1     1    -1    -1 
   5    -1    -1     1    -1     1    -1     1    -1     1    -1     1    -1 
   6     1    -1     1    -1    -1     1    -1    -1     1    -1    -1     1 
   7    -1     1     1    -1    -1    -1     1     1    -1    -1    -1     1 
   8     1     1     1    -1     1     1    -1     1    -1    -1     1    -1 
   9    -1    -1    -1     1     1     1    -1     1    -1    -1    -1     1 
  10     1    -1    -1     1    -1    -1     1     1    -1    -1     1    -1 
  11    -1     1    -1     1    -1     1    -1    -1     1    -1     1    -1 
  12     1     1    -1     1     1    -1     1    -1     1    -1    -1     1 
  13    -1    -1     1     1     1    -1    -1    -1    -1     1     1     1 
  14     1    -1     1     1    -1     1     1    -1    -1     1    -1    -1 
  15    -1     1     1     1    -1    -1    -1     1     1     1    -1    -1 
  16     1     1     1     1     1     1     1     1     1     1     1     1 
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 Row   ACD   BCD   ABCD 
 
   1    -1    -1      1 
   2     1    -1     -1 
   3    -1     1     -1 
   4     1     1      1 
   5     1     1     -1 
   6    -1     1      1 
   7     1    -1      1 
   8    -1    -1     -1 
   9     1     1     -1 
  10    -1     1      1 
  11     1    -1      1 
  12    -1    -1     -1 
  13    -1    -1      1 
  14     1    -1     -1 
  15    -1     1     -1 
  16     1     1      1 
 

The 16 response values for percentage conversion are:  
 
     71     61     90     82     68     61     87     80     61     50 
     89     83     59     51     85     78 
Fractional Factorial Fit:  % Conversion versus A; B; C; D 
 
Residuals: 
ALL 16 residuals are 0: no residual degrees of freedom! 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  7.225e+01         NA      NA       NA 
A1          -4.000e+00         NA      NA       NA 
B1           1.200e+01         NA      NA       NA 
C1          -1.125e+00         NA      NA       NA 
D1          -2.750e+00         NA      NA       NA 
A1:B1        5.000e-01         NA      NA       NA 
A1:C1        3.750e-01         NA      NA       NA 
A1:D1        2.229e-16         NA      NA       NA 
B1:C1       -6.250e-01         NA      NA       NA 
B1:D1        2.250e+00         NA      NA       NA 
C1:D1       -1.250e-01         NA      NA       NA 
A1:B1:C1    -3.750e-01         NA      NA       NA 
A1:B1:D1     2.500e-01         NA      NA       NA 
A1:C1:D1    -1.250e-01         NA      NA       NA 
B1:C1:D1    -3.750e-01         NA      NA       NA 
A1:B1:C1:D1 -1.250e-01         NA      NA       NA 
 

And the estimated effects become:  
 
  (Intercept)       A1            B1            C1            D1  
 1.445000e+02 -8.000000e+00  2.400000e+01 -2.250000e+00 -5.500000e+00  
     A1:B1         A1:C1         A1:D1         B1:C1         B1:D1  
 1.000000e+00  7.500000e-01  4.458239e-16 -1.250000e+00  4.500000e+00  
     C1:D1      A1:B1:C1      A1:B1:D1      A1:C1:D1      B1:C1:D1  
-2.500000e-01 -7.500000e-01  5.000000e-01 -2.500000e-01 -7.500000e-01  
  A1:B1:C1:D1  
-2.500000e-01 
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The normal-plot indicates that the main effect of catalyst charge, temperature and 
concentration together with the interaction between temperature and concentration are 
significant. 
 
We notice that all the estimated three-factor and four-factor interactions are small. If the true 
value for these interactions are zero, their estimators will have expected value 0 and the same 
equal variance 2

effektσ . 

Therefore an estimator for 2
effektσ  is given by: 

5
D̂ABCD̂BCD̂ACD̂ABĈAB 22222 ++++  

For our data the estimate becomes:   

3.0
5

)25.0()75.0()25.0()5.0()75.0(s
22222

2
effekt =

−+−+−++−
=  

and the standard deviation of the effect is estimated to  effekts 0 3 0 55. .= ≈ . 
 
By evaluation of significance the absolute value of the estimated effects shall be compared to: 

1.412.5710.55ts 0.025,5effekt =⋅=⋅ . Therefore one may question if also the main effect of 
pressure is significant.  
 
Estimation of variance by replication.   
 
In order to get a model independent estimate of the variance we need to replicate our 
experiment. If one replicate is performed, we have two response values for each level 
combination and both of these have the same expected value.  
 
Let 11y  and 12y  be the two observed response values for the first level combination. An 
estimate for the variance of the observations, ,σ2  is then given by:  
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( )
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j 1
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11 1211 12 11 12
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Normally we get  2k  such estimates that can be used to estimate 2σ  by averaging.  
Example. A 32  experiment with replicates.  
 

A B C 1iy  2iy  1 2i iy y−  ( )2
2 1

2
i iy y−

 

- - - 59 61 -2 2 
+ - - 74 70 4 8 
- + - 50 58 -8 32 
+ + - 69 67 2 2 
- - + 50 54 -4 8 
+ - + 81 85 -4 8 
- + + 46 44 2 2 
+ + + 79 81 -2 2 

Total      64 
 
 

The estimate for 2σ  then becomes: 2 64 8
8

s = = . 
2 2

2 24 4 4 8 2
16 16effekt effekt

ss
n
σ

σ
⋅ ⋅

= ⇒ = = =  

 
By doing ( m -1) replicates (in total m  values for each level combination), an estimator for 

2σ  for each i  is given by 
( )2

1 1

m
ij i

j

Y Y
m=

−

−∑ . By averaging these we get an estimator for the 

variance with ( )1 2km − degrees of freedom.   
 
 
Interpretation of effects.  
 
If a factor has no interaction with other factors we interpret estimated main effects as the 
estimated change in expected response when we go from low to high level of the 
corresponding factors. If a factor has interactions with other factors the effect on the expected 
response by going from low to high level will depend on the level of those factors that are 
involved in an interaction with this factor. The interpretation of the effect of this factor is then 
done by means of interaction-plot(s).  
 
Example 32  experiment for chemical yield. 
 
Here the estimated main-effect of temperature was 23 and the interaction between 
temperature and catalyst was estimated to 10. It is now possible to construct a table which 
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illustrates what happens for the 4 level combinations of A and C. A graphical visualization of 
this table is called an interaction plot.  
 
 

 C 
A - + 
- 

57
2

5460
=

+   

+ 
70

2
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=
+  5.81

2
8083

=
+  

 
 
 
Main-effects plot and two-factor interaction plot is shown below. If there is no interaction 
between two factors the effect of one factor is the same independent of the level of the other 
factor. The lines in a two-factor interaction plot will then become parallel. This seems to be 
almost true for the factors A and B and for B and C, but not for the factors A and C.  
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The interpretation of the analysis is then that the effect of catalyst is negative when the 
temperature is its low level, but positive when temperature is at its high level. The best result 
for the yield is obtained when both temperature and catalyst is on their high level.  
 
A cube plot illustrates what level combinations are favourable.  
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Blocking in 2 p  experiment. 
   
An experiment should always be performed in a randomized order. Randomization is our best 
guarantee to obtain independent observations and reduces the chances for external factors 
(factors not included in the experiment) to influence our response such that we end up with 
wrong conclusions. It is also important to reset the level combinations for each experimental 
run to ensure that the observations have as equal variance as possible.  
 
If we are going to do many experiments, it will often be the case that the experimental 
condition changes from the start of the experimentation until it is done. Change in 
experimental conditions may influence the response values leading to wrong estimates for the 
effects. This can be avoided if we block the experiment. Sometimes there are other constraints 
like restrictions on the raw-material that makes the use of blocking desirable. When an 
experiment is blocked the randomization should always be performed in each block.  
 

32  experiment in  2 blocks each  block of sixe 4. 
 
Assume we conduct the experiments where the three-factor interaction has a – in block 1 og 
the rest of the experiments in block 2. 
 

Run A B C AB AC BC  ABC 
1 - - - + + +  - 
4 + + - + - - Block 1 - 
6 + - + - + -  - 
7 - + + - - +  - 
         

2 + - - - - +  + 
3 - + - - + - Block 2 + 
5 - - + + - -  + 
8 + + + + + +  + 

 
We observe that if a number h  is added to all runs in block 2, the calculated estimates of 
main effects and two-factor interactions remain unchanged since there are equally many + and 
– in each block. This is not true for the three-factor interaction that will be confounded with 
the block effect.   
 
        
         32  experiment in 4 blocks, each block of sixe 2 
 
 Assume we block the 32  experiment in blocks using the following sign pattern in the two-
factor interaction columns for AB and BC.   
                                 

Block 1 Block 2 Block 3 Block 4 
(-   -) (-   +) (+   -) (+    +) 
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The design will then be blocked into 4 blocks as shown below: 
 
Block A B C Forsøk AB BC AC ABC 
Block 1 - + - 3 - - + + 
 + - + 6 - - + - 
Block 2 + - - 2 - + - + 
 - + + 7 - + - - 
Block 3 + + - 4 + - - - 
 - - + 5 + - - + 
Block 4 - - - 1 + + + - 
 + + + 8 + + + + 
 
AB, BC and AC are confounded with the block effect.  
 
How to decide which effects should be used for blocking  
 
We should strive at being in a position such that main-effects and low order interactions can 
be estimated. Let I be a column with only + signs. We notice that.  
           
                              I = AA=BB=CC 
 
where AA, BB, … means the entry-wise product of signs in the respective columns. 
Assume we block a 32 experiment letting D=ABC and E=AC be our blocking factors. The 
interaction between D and E then becomes: DE=ABCAC=B, i.e. one of the main effects are 
confounded with the block effect in addition to ABC and BC. 
 
Blocking in general 
 
Assume we are going to block a 62  experiment in 8 blocks using the blocking factors 

ACEB1 = ABEFB2 =  and . The blocking is then done using the following sign 
patterns in the corresponding three factor columns.  
 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 
(- - -) (+ - -) (- + -) (+ + -) (- - +) (+ - +) (- + +) (+ + +) 

 
We get: 
               BCFACEABEFBB 21 ==  
               BDEACEABCDBB 31 ==  
               CDEFABEFABCDBB 32 ==  
          ADFDACEABEFABCBBB 321 ==  
 
These four three-factor interactions will together with ACEB1 = , ABEFB2 =  og 

be confounded with the block effect.  
 
 
 
 

ABCDB3 =

ABCDB3 =
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The Analysis of variance table for 2p  experiments 
 
In cases whwn an experiment is blocked it may be useful or even necessary to use an analysis 
of variance table in order to find an estimate for the variance of the response. If all columns in 
the design matrix are orthogonal we have  
 

                    2 2 2 2 2 2
1 1 2 2

1 1 1

n n n

R i i k ki
i i i

SS b x b x b x
= = =

= + + +∑ ∑ ∑⋯⋯⋯⋯                  (2) 

 
In two-level experiments we have 2 1p −  effect columns and k  becomes 2 1p − . If we use that 
that a regression coefficient is equal to the corresponding effect divided by two and that for a 

two-level experiment 2

1
 =1,2, ,

n

ji
i

x n j k
=

=∑ , ,…………  we get:  

            
2 2 2

4 4 4

ˆ ˆˆ ....
R

A n B n ABC nSS ⋅ ⋅ ⋅
= + + +⋯⋯⋯⋯  

 
Each of the terms above gives us the sum of squares for the effects.  
 
For an 32 experiment this becomes:  
 

Source SS DF 
A 22 ˆASS A=  1 

B 22 ˆBSS B=  1 

C            22 ˆCSS C=  1 

AB 22 ˆABSS AB=  1 

AC 22 ˆACSS AC=  1 

BC 2
BCSS 2BCˆ=  1 

ABC 22 ˆABCSS ABC=  1 

Total 
( )2

1

n

T R i
i

SS SS y y
=

= = −∑  
7 

 
 
Notice that here R TSS SS= . This is due to the fact that when a model with a constant term and 
seven effects are fitted to the data, all residuals become zero.  
 
If the three-factor interaction ABC is used as blocking factor, we can consider ABC to be  a 
blocking factor instead of a three-factor interaction. The blocking factor has two levels which 
we can code to –1 and +1. The analysis of variance table therefore becomes:  
 

Source SS DF 
A 22 ˆASS A=  1 

B 22 ˆBSS B=  1 

C            22 ˆCSS C=  1 
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AB 22 ˆABSS AB=  1 

AC 22 ˆACSS AC=  1 

BC 22 ˆBCSS BC=  1 

Block 22 ˆBlockSS ABC=  1 

Total 
( )2

1

n

T i
i

SS y y
=

= −∑  
7 

 
 
In order to perform the experiment in 4 blocks, one might wish to introduce a factor with four 
levels. But four levels may be represented with two two-level factors. Thus we can pick two 
effect-columns and block according to the four possible level combination in these two 
columns. The interaction between these two factors will then also be confounded with the 
block effect.  
 
For a 32 experiment divided into four blocks using two of the three two-factor interactions 
columns AB, AC and BC we get this analysis of variance table.  
 
 

Source SS DF 
A 22 ˆASS A=  1 

B 22 ˆBSS B=  1 

C                   22 ˆCSS C=  1 

Block 2 2 22 2 2ˆ ˆˆ
BlockSS AB BC AC= + +  3 

ABC 22 ˆABCSS ABC=  1 

Total 
( )2

1

n

T i
i

SS y y
=

= −∑  
7 

 
 
 
Let us assume that a replicated 32 experiment is carried out in four blocks. It is then possible 
to block the experiment using ABC as the blocking factor in each replicate. The other 
blocking factor will have –1 for the first eight experiments and +1 for the eight last. Both 
block factor columns are orthogonal to the other columns. The same is true for their 
interaction column.  
 
Let the average in each of the four blocks be: 321 y,y,y  and 4y . In the sum of squares for the 
blocks the three estimated effects are given by:  
 

                                           1 32 4 -
2 2

y yy y ++ 
 
 

, 

 

                                          3 4 1 2-
2 2

y y y y+ + 
 
 

 and  
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                                           2 31 4 -
2 2

y yy y ++ 
 
 

 

 
The sum of squares for the blocks is:  
 

2 2 21 3 3 4 2 32 4 1 2 1 44( ) 4( ) 4( )
2 2 2 2 2 2Block

y y y y y yy y y y y ySS + + ++ + +
= − + − + −  

 
The analysis of variable table becomes: 
 

Source SS DF 
A 2ˆ4ASS A=  1 

B 2ˆ4BSS B=  1 

C                         24CSS C=
⌢

 1 

AB 2ˆ4ABSS AB=  1 

AC 2ˆ4ACSS AC=  1 

BC 2ˆ4BCSS BC=  1 

Block BlockSS  3 
Error ( )E T A B BlockSS SS SS SS SS= − + + +⋯  6 
Total 2

1
( )

n

T i
i

SS y y
=

= −∑  
15 

 
 
Partial confounding 
 
A replicated experiment can be divided into blocks using different interactions each time. 
This is called partial confounding. If the experiment the first time is blocked using the ABC 
interaction and the next time the AB interaction it is possible to estimate the AB interaction 
the first time and the ABC interaction the next time and so on.   
 
The block-effect should now be calculated using the general formulae:  
 

                          ( )2
m s

Block ib
i=1 b=1

SS = k y - y∑∑  

 
where k  is the number of observations in each block, m is the number of replicates, s is the 
number of blocks in each replicate, iby is the average in block b in replicate i  and y is the 
average of all observations.  
 
Suppose we want to do such a partial confounding for a replicated 32  experiment  
 
The analysis of variance table for a replicated 32  experiment becomes: 
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Source SS DF 
A 2ˆ4ASS A=  1 

B 2ˆ4ASS A=  1 

C                       24cSS C=
⌢

 1 

AB 2ˆ2ABSS AB=  1 

AC 2ˆ4ACSS AC=  1 

BC 2ˆ4BCSS BC=  1 

ABC 2ˆ2ABCSS ABC=  1 

Block BlockSS  3 
Error ( )E T A B BlockSS SS SS SS SS= − + + +⋯  5 
Total 2

1
( )

n

T i
i

SS y y
=

= −∑  
15 

 
 
 
 
Fractional factorial designs. 
 
To save effort and costs we may want to find out by means of  a 2 p  experiments if more than 
p  factors have any influence on the response. 

 
Example. Suppose we suspect that three factors influence the response, but are only allowed 
to do 4 experiments.  
The full 32  experiment, extended with interaction columns can be written as:  
 
  

Run A B AB C AC BC ABC 
1 - - + - + + - 
2 + - - - - + + 
3 - + - - + - + 
4 + + + - - - - 
5 - - + + - - + 
6 + - - + + - - 
7 - + - + - + - 
8 + + + + + + + 

 
 
Let us carry out the 4 experiments with a + in the column for the three-factor interaction i.e.  
 

Run A B AB C AC BC 
2 + - - - - + 
3 - + - - + - 
5 - - + + - - 
8 + + + + + + 
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For the four chosen experiments we notice that I = ABC , which implies that AB and C get the 
same signs. This is also true for A and BC and for B and AC. I = ABC is defining relation for 
the four run design. If we instead had chosen the four runs with a – in the three-factor 
interaction column the defining relation would have been I = -ABC .  
 
Now for the full 32  experiment we get 

                 ( )2 4 6 8 1 3 5 7

4
y y y y y y y y

A
+ + + − + + +

=
⌢

 

               ( )1 2 7 8 3 4 5 6

4
y y y y y y y y

BC
+ + + + − + + +

=
⌢

 

From the four run or 3 12 −  experiment we obtain  

                   ( )2 8 3 5
A A+ BC

2
y y y y

l
+ − +

= =
⌢ ⌢

 

In the same way 
                   B B+ ACl =

⌢⌢
 

                   C+ABCl =
⌢⌢⌢⌢ ⌢⌢⌢⌢

 
                   ABC 2Il y= +

⌢⌢⌢⌢
 

 
 
 
                    

where 
8

1

1 1 1 1
4 8 8 8I i i i i

ABC i ABC ABC
l y y y y

+ = + −

= = + −∑ ∑ ∑ ∑  

 If all two- and three-factor interactions are small we would in theory be able to estimate all 
the three main-effects.  
 
Generator for the design 
 
In the 3 12 − experiment the signs in the AB column and the C column are the same i.e. C=AB 
This relation is called the generator for the design. 2C=AB C =I=ABC⇔ which means that 
equivalently can say that I=ABC  is the defining relation for the experiment (ABC is defining 
contrast). In order to find out which effects that are aliased (have the same signs in the factor 
columns) we may multiply the effects by the defining relation. Hence for the 3 12 −  experiment  
we get 
              AI = AABC = BC ⇒  A ≡  BC 
              BI = BABC = AC ⇒  B ≡  AC 
              CI = CABC = AB ⇒  C ≡  AB 
 
About half fractions of  2 p  designs 
 
A half fraction of a 2 p  design is called a 12 p−  design. This is to be read that we are going to 
experiment with p  two-level factors in 12 p−  runs. It can be constructed as follows: 
Number the factors 1 2, , , p………… . Then construct a 12 p−  design in the factors1 2 1, , , p −………… and let 
the design column for the last factor be the interaction column ( )123 1p± −⋯⋯⋯⋯ . If we remove 
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one of the factor columns we will have a complete fractional factorial design in the 1p −  
others.  
 
Example of a half-fraction.  
 
The following example is the often cited Reactor Example from Box, Hunter and Hunter 
(1978), page 377. The goal was to find out how five factors affected % reacted, y. Factors 
levels and the full 52  design is given below.  
 
Factors                                         -           +            
A: Feed rate conversion             10        15 
B: Catalyst (%)                             1          2  
C: Agitation rate (rpm)             100      120 
D: Temperature ( )0 C                140      180 
E: Concentration (%)                   3          6      
 
 
      A  B  C  D  E  y 
  1  -1 -1 -1 -1 -1 61 
 *2   1 -1 -1 -1 -1 53 
 *3  -1  1 -1 -1 -1 63 
  4   1  1 -1 -1 -1 61 
 *5  -1 -1  1 -1 -1 53 
  6   1 -1  1 -1 -1 56 
  7  -1  1  1 -1 -1 54 
 *8   1  1  1 -1 -1 61 
 *9  -1 -1 -1  1 -1 69 
 10   1 -1 -1  1 -1 61 
 11  -1  1 -1  1 -1 94 
*12   1  1 -1  1 -1 93 
 13  -1 -1  1  1 -1 66 
*14   1 -1  1  1 -1 60 
*15  -1  1  1  1 -1 95 
 16   1  1  1  1 -1 98 
*17  -1 -1 -1 -1  1 56 
 18   1 -1 -1 -1  1 63 
 19  -1  1 -1 -1  1 70 
*20   1  1 -1 -1  1 65 
 21  -1 -1  1 -1  1 59 
*22   1 -1  1 -1  1 55 
*23  -1  1  1 -1  1 67 
 24   1  1  1 -1  1 65 
 25  -1 -1 -1  1  1 44 
*26   1 -1 -1  1  1 45 
*27  -1  1 -1  1  1 78 
 28   1  1 -1  1  1 77 
*29  -1 -1  1  1  1 49 
 30   1 -1  1  1  1 42 
 31  -1  1  1  1  1 81 
*32   1  1  1  1  1 82 
 
The estimated effects are given below together with a normal plot.  
 
   (Intercept)        A1             B1             C1             D1  
  1.310000e+02  -1.375000e+00   1.950000e+01  -6.250000e-01   1.075000e+01  
       E1          A1:B1          A1:C1          A1:D1          A1:E1  
 -6.250000e+00   1.375000e+00   7.500000e-01  -8.750000e-01   1.250000e-01  
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      B1:C1        B1:D1          B1:E1          C1:D1          C1:E1  
  8.750000e-01   1.325000e+01   2.000000e+00   2.125000e+00   8.750000e-01  
      D1:E1       A1:B1:C1       A1:B1:D1       A1:B1:E1       A1:C1:D1  
 -1.100000e+01   1.500000e+00   1.375000e+00  -1.875000e+00  -7.500000e-01  
     A1:C1:E1      A1:D1:E1       B1:C1:D1       B1:C1:E1       B1:D1:E1  
 -2.500000e+00   6.250000e-01   1.125000e+00   1.250000e-01  -2.500000e-01  
     C1:D1:E1    A1:B1:C1:D1    A1:B1:C1:E1    A1:B1:D1:E1    A1:C1:D1:E1  
  1.250000e-01  -7.031454e-15   1.500000e+00   6.250000e-01   1.000000e+00  
   B1:C1:D1:E1 A1:B1:C1:D1:E1  
 -6.250000e-01  -5.000000e-01 

 
The normal plot indicates that the main-effects of B, D and E and the interactions BD and DE 
are the essential ones.  
 
Now assume we instead only run the 16 experiments that are marked with a *. This 
corresponds to running those 16 experiments for which I=ABCDE or equivalently letting  
E=ABCD.  The experimental runs would then be as follows.  
 
    A  B  C  D  E  y 
1  -1 -1 -1 -1  1 53 
2   1 -1 -1 -1 -1 63 
3  -1  1 -1 -1 -1 53 
4   1  1 -1 -1  1 61 
5  -1 -1  1 -1 -1 69 
6   1 -1  1 -1  1 93 
7  -1  1  1 -1  1 60 
8   1  1  1 -1 -1 95 
9  -1 -1 -1  1 -1 56 
10  1 -1 -1  1  1 65 
11 -1  1 -1  1  1 55 
12  1  1 -1  1 -1 67 
13 -1 -1  1  1  1 45 
14  1 -1  1  1 -1 78 
15 -1  1  1  1 -1 49 
16  1  1  1  1  1 82 
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Estimated main effects and two-factor interactions are given below together with a normal 
plot. 
  (Intercept)        A1            B1            C1            D1  
 1.305000e+02 -2.000000e+00  2.050000e+01  9.158391e-16  1.225000e+01  
       E1         A1:B1         A1:C1         A1:D1         A1:E1  
-6.250000e+00  1.500000e+00  5.000000e-01 -7.500000e-01  1.250000e+00  
     B1:C1         B1:D1         B1:E1         C1:D1         C1:E1  
 1.500000e+00  1.075000e+01  1.250000e+00  2.500000e-01  2.250000e+00  
     D1:E1  
-9.500000e+00 

 
We note that the same effects are judged significant by the normal plot and that their sizes are 
about the same as we obtained from the full 32 run experiment. The success of the half 
fractions in this case is due to fact that main effects are only aliased with four-factor 
interactions and two-factor interactions are only aliased with three-factor interactions.  
 
Resolution in fractions of 2 p  experiments.   
 
Definition. A design is said to be of resolution R if no p -factor effect is aliased with an effect 
containing less than R- p  factors.   
 
In a resolution R design we have: Main effects are aliased with R-1 factor interactions 
Two-factor interactions are aliased with R-2 factor interactions. 
 
Resolution III 
 
Main effects are aliased with two-factor interactions. Example 3 12 − , I=ABC. 
 
Resolution IV 
 
Main-effects are aliased with three-factor interactions. Two-factor interactions are aliased 
with two-factor interactions. Example 4 12 − , I=ABCD. 
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Resolution V 
 
Main-effects are aliased with four-factor interactions. Two-factor interactions are aliased with 
three-factor interactions. Example 5 12 − , I=ABCDE.  
 
For short the resolution of the design is always the length of the shortest word in the defining 
relation.  
 
 
 
Fractions of 2 p  experiments. 
 
A quarter fraction of a 52  experiment. i.e. a 5 22 −  experiment can be constructed as follows. 
Construct a 32  experiment in the factors A, B and C. let D=AB and E=AC. We notice that 
I=ABD and I=ACE and also that 2I =I=ABDACE=BCDE. Hence the defining relation is 
I=ABD=ACE=BCDE and the design will be of resolution III. 
 
Designs of resolution III 
   
A design where you assign factors to all possible 2 1p −  orthogonal columns of plus and 
minuses is called a saturated designs. Such designs will always be resolution III designs. 
 
An Example. The Bicycle experiment (BHH 1978). In this example we have 7 factors each at 
two levels and we just want to do 8 experiments. It was constructed as follows: First a 32  
experiment was constructed in the factors A, B and C. Thereafter the four other factors were 
assigned to factor columns in the following way: D=AB, E=AC, F=BC and G=ABC.  
 
Run A:Seat 

up/down 
B:Dynamo 
off/on 

C:Handlebars  
up/down 

D:Gear 
low/medi
um 

E: Rain- 
coat 
on/off 

F: Break 
fast 
yes/no 

G: Tires 
hard/soft 

Time to 
climb 
hill (sec) 
y 

1 - - - + + + - 69 
2 + - - - - + + 52 
3 - + - - + - + 60 
4 + + - + - - - 83 
5 - - + + - - + 71 
6 + - + - + - - 50 
7 - + + - - + - 59 
8 + + + + + + + 88 

 
The seven estimated effects are shown below, but to know what we actually are estimating we 
need to find the defining relations for this design:  
 
(Intercept)    A1    B1     C1    D1     E1     F1     G1 
      133.0   3.5   12.0   1.0   22.5   0.5    1.0    2.5 
         
From the four generators we obtain:  
 
                        I = ABD=ACE=BCF=ABCG 
which gives 
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2

3

4

I =I=BCDE=ACDF=CDG=ABEF=BEG=AFG
I =I=DEF=ADEG=BDFG=CEFG
I =I=ABCDEFG

 

 
In order to find out how the estimates of an effect are aliased with other effects we need to 
multiply the effect by all these 15 words. Let us assume that all interactions of order three and 
higher are negligible. Then we get for the estimators of the main effects 
 

                            

A

B

C

D

E

F

G

A+BD+CE+FG

B+AD+CF+EG

C+AE+BF+DG

D+AB+CG+EF

E+AC+BG+DF

F+BC+AG+DE

G+CD+BE+AF

l

l

l

l

l

l

l

→

→

→

→

→

→

→

⌢⌢⌢⌢

⌢⌢⌢⌢

⌢⌢⌢⌢

⌢⌢⌢⌢

⌢⌢⌢⌢

⌢⌢⌢⌢

⌢⌢⌢⌢

 

 
where the →  points to  which effects that are aliased or the expected value of the estimators.  
 
We notice that the estimates for Bl  and Dl  are larger than the others. If the factors A,C,E,F 
and G are inert, the 7 42 −  design can be interpreted as a repeated 22  design in the factors B 
and D. All interactions where the factors A,C,E,F and G are involved disappear and we get 

B D AB, D and BDl l l→ → →
⌢ ⌢ ⌢⌢ ⌢ ⌢⌢ ⌢ ⌢⌢ ⌢ ⌢

. It is possible to construct 16 7 42 −  design by choosing + or – 
signs for the four generators.  
 

                      
D AB      F= BC
E = AC     G= ABC
= ± ±

± ±
 

 
Often in a highly fractionated design we would like to be able to estimate the main effects free 
of aliasing with two-factor interactions. It is then possible to run a follow-up design with the 
generators D AB, E=-AC, F=-BC and G=ABC-= . For this design we obtain: 
 

                   
2

3

4

I=-ABD=-ACE=-BCF=ABCG
I =BCDE=ACDF=-CDG=ABEF=-BEG=-AFG
I =-DEF=ADEG=BDFG=CEFG
I =-ABCDEFG

 

  
which gives when we neglect interactions of order higher than 2.  
 

                   

A

B

G

A-BD-CE-FG
B-AD-CF-EG

G-CD-BE-AF

l
l

l

∗

∗

∗

→

→

→

⋮⋮⋮⋮
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and                   

                   

A A

G G

A
2

2

l l

l l G

∗

∗

+
→

+
→

⌢⌢⌢⌢

⋮⋮⋮⋮
⌢⌢⌢⌢

 

 
If we instead were interested in examining one particular main effect, say D, and all 
interactions involved with this main effect we could run a follow-up design with generators  
D AB, E=AC, F=BC and G=ABC-=  i.e., we switch all the signs in the column for factor D. 
Thereby we obtain 
 

                     
2

3

4

I=-ABD=ACE=BCF=ABCG
I =-BCDE=-ACDF=-CDG=ABEF=BEG=AFG
I =-DEF=-ADEG=-BDFG=CEFG
I =-ABCDEFG

 

 
If third and higher order interactions are inert we get  
 

                           

A

B

D

A-BD+CE+FG

B-AD+CF+EG
     

D-AB-CG-EF
     

l

l

l

→

→

→

ɶɶɶɶ

ɶɶɶɶ

⋮⋮⋮⋮
ɶɶɶɶ

⋮⋮⋮⋮

 

 
 Thus               

                           

D D

A A

D
2

BD
2

l l

l l

+
→

−
→

⌢⌢⌢⌢ ɶɶɶɶ

⌢⌢⌢⌢ ɶɶɶɶ

⋮⋮⋮⋮

 

Example. A follow up design to the bicycle example was conducted to investigate how factor 
D affected the response. The signs in the column for factor D were changed as shown in the 
table below. 
Run A:Seat 

up/down 
B:Dynamo 
off/on 

C:Handlebars  
up/down 

D:Gear 
low/medi
um 

E: Rain- 
coat 
on/off 

F: Break 
fast 
yes/no 

G: Tires 
hard/soft 

Time to 
climb 
hill (sec) 
      y 

1 - - - - + + - 47 
2 + - - + - + + 74 
3 - + - + + - + 84 
4 + + - - - - - 62 
5 - - + - - - + 53 
6 + - + + + - - 78 
7 - + + + - + - 87 
8 + + + - + + + 60 
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The estimated effects are:  
 
(Intercept)    A1      B1      C1       D1        E1      F1      G1 
     136.25   0.75   10.25    2.75     25.25    -1.75   -2.25   -0.75 
 
By combining these estimates with the ones from the first fraction we could obtain unbiased 
estimates for the main effect of factor D and all interactions involved with factor D. Here the 
two fractions gave very similar results and would strengthen our believes that B and D are the 
two really important factors.  
 
Constructing fold-over of resolution III designs 
 
Suppose we have constructed a 7 4

III2 − design where D=AB, E=AC, F=BC and G=ABC. For the 
first eight runs we have 8I ABD=ACE=BCF=ABCG=H= .  
Now add eight more runs from a 7 4

III2 − design where D=-AB, E=-AC, F=-BC, G=ABC and 

8H I= − , i.e we add eight more runs where we have changed signs in each column.  The 16 
run design is shown below. Such a way of constructing designs where we first add a column 
of plus signs and thereafter double the run size by adding a new design where all the signs are 
switched is called construction by fold-over. If the resolution of a design is odd (3, 5, ...) we 
can always improve the resolution by one in this way. If the resolution is even (2, 4, ...), it will 
not be improved.  
 

Run A B C D E F G H 

1 - - - + + + - + 
2 + - - - - + + + 
3 - + - - + - + + 
4 + + - + - - - + 
5 - - + + - - + + 
6 + - + - + - - + 
7 - + + - - + - + 
8 + + + + + + + + 
9 + + + - - - + - 

10 - + + + + - - - 
11 + - + + - + - - 
12 - - + - + + + - 
13 + + - - + + - - 
14 - + - + - + + - 
15 + - - + + - + - 
16 - - - - - - - - 

 
 
For the last eight runs we have 8I ABD=-ACE=-BCF=ABCG=-H= − . For the whole 16 runs 
design we get the following identity relationship: 16I ABCG=ABDH=ACEH=BCFH= . 
Multiplying these four words together two by two, three by three and finally all four, all the 
words are of length four and we have a resolution IV design.  
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Blocking in fractionated factorial designs. 
 
When we block a fractionated design we need to take into account the defining relations. Let 
us illustrate this by two examples.  
Example: A 5 12 −  is to be run in two blocks each of size 8 run. For the half-fraction the 
defining relation is I=ABCDE. Suppose we block after the AB interaction. Then also 
IAB=ABCDEAB=CDE is confounded with the block effect. 
 
Example: The same design is to be run in four blocks using AC and BC. AB will then be 
confounded with the block effect. The same will be true for IAC, IAB and IBC or BDE, ADE 
and CDE.  
 
Final remarks and further reading 
 
The techniques you have learned about two-level experimentation can be used to “improve 
almost everything”, but not to optimize. In order to optimize a process you need to 
approximate the response by what we call a response surface which normally will be a second 
order function. And you need designs that can estimate such functions. These are called 
response surface designs. The most well-known is the central composite designs that add 
centre points and two-points on the axis for each factor to a two-level design. The distance 
from the centre to the points on the axis is often k−  and k where k  is the number of 
factors.  Though, you can obtain a lot by basic two-level experimentation and in a dynamic 
and rapidly changing world the focus may equally well be on “never ending improvement”  
instead of optimization. For those who want to learn more about this interesting and 
challenging topic the “classics” are: 
 
Box, G. E. P., Hunter, J. S. & Hunter, W. G.: Statistics for Experimenters (1978, 2005) 
Montgomery, D. C.: Design and Analysis of Experiments (2007, 7th edition) 
Wu, C. F. & Hamada, M.S.: Experiments, Planning, Analysis, and Optimization (2009, 2 th 
edition) . 
Box, G. E. P. & Draper, N. R.: Response Surfaces, Mixtures, and Ridge Analyses (2007). 
Myers, R. H. & Montgomery, D. C.: Response Surface Methodology (2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


