Which of the following is NOT correct for a 2^{k} full factorial design matrix \boldsymbol{X} ?

A \boldsymbol{X} only contains the numbers -1 and 1 .
B The sum of each column equals 1 .
c The columns of \boldsymbol{X} are orthogonal.
D $\boldsymbol{X}^{T} \boldsymbol{X}$ is a diagonal matrix.

$\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon$, with $\varepsilon \sim N_{n}\left(0, \sigma^{2} \boldsymbol{I}\right)$

$\widehat{\text { Effect }}_{j}=2 \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i j} Y_{i}$.
$\operatorname{Var}\left(\widehat{\text { Effect }}_{j}\right)$ equals
A σ^{2}
в $\frac{1}{n} \sigma^{2}$
C $\frac{2}{n} \sigma^{2}$
D $\frac{4}{n} \sigma^{2}$

This plot is called

A Main effects plot
B Interaction effects plot
C Pareto plot
D Normal plot

Main effects plot for y
The estimated main effect of A is

A -20
B 0
c 5
D 20

Interaction plot matrix for y

Which of the estimated interaction effects $A B, A C, B C$ is the largest?

A AB
B AC
c BC

Set up a full factorial design in the three variables A, B, C, and use generators: $D=A B, E=A C$, $F=B C, G=A B C$. What do you get?

A $2_{I I I}^{7-4}$
в $2_{I V}^{7-3}$
с $2_{I V}^{7-4}$
р $2^{7 / I}-3$

For a design is of resolution III:
A Main effects are confounded with each other.

B Main effects are confounded with 2-way interactions.
c Main effects are confounded with 3-way interactions.

D Main effects are confounded with 4-way interactions.

Correct?

Are you sure you want to read the correct answers? Maybe try first?

Answers

Correct: BDCDAAB

