NTNU
Noregs teknisk-naturvitskaplege universitet

Fakultet for informasjonsteknologi,
matematikk og elektroteknikk
Institutt for matematiske fag

English
Contact during exam:
John Tyssedal 73593534/41645376

Exam in TMA4267 Linear statistical models

Friday May 202011

Time 15.00-19.00

Permitted aids: A yellow stamped A-5 sheet with your own handwritten notes.
Tabeller og formler i statistikk (Tapir forlag). K. Rottman: Matematisk formelsamling. Calculator HP30S or Citizen SR-270X.

Problem1

An exam consists of two tasks. For each task a score is given and the final mark is decided from the sum of the scores for each task. Let X_{1} be the score on task 1 and let X_{2} be the score on task 2. For each student we shall assume that $X_{1} \sim N\left(\mu, \sigma^{2}\right)$, that $X_{2} \sim N\left(k \mu, k^{2} \sigma^{2}\right)$ and that $\boldsymbol{X}=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ is binormal distributed. Let the correlation between X_{1} and X_{2} be ρ.
a) What is the distribution of the random vector $\boldsymbol{Y}=\left[\begin{array}{c}X_{1}+X_{2} \\ X_{1}\end{array}\right]$? Explain your answer. Find the expectation of $\boldsymbol{Y}, \boldsymbol{\mu}_{\boldsymbol{Y}}$, and the covariance matrix of $\boldsymbol{Y}, \Sigma_{\boldsymbol{Y}}$.
b) Find $E\left[X_{1}+X_{2} \mid X_{1}=x_{1}\right]$. What is the expected final score for a student that has a score of one point more than what is expected on the first task when $k=4$ and $\rho=1 / 2$? Find the first principal component of $\Sigma_{X}=\operatorname{Cov}\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ when $k=1$ and $\rho=1 / 2$.
How much of the variance of $X_{1}+X_{2}$ is explained by the first principal component?

$$
\begin{aligned}
& \text { Help: (For } \boldsymbol{X}=\left[\begin{array}{l}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\right) \text {, we have } \\
& \qquad\left(\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2}\right) \sim N\left(\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \Sigma_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
\end{aligned}
$$

Problem 2

A treatment plant is interested in how ph-value and three different polymers affect the amount of solid material in the filter. The three polymers are categorical variables and given by the indicator variables Z_{1} and Z_{2}. The coding for these are as follows

Indicators	Z_{1}	Z_{2}
Polymer 1	1	0
Polymer 2	0	1
Polymer 3	0	0

The collected data are given in the table below..

solid material	ph	Z_{1}	Z_{2}
292	6.5	1	0
329	6.9	1	0
352	7.8	1	0
378	8.4	1	0
392	8.8	1	0
410	9.2	1	0
198	6.7	0	1
227	6.9	0	1
277	7.5	0	1
297	7.9	0	1
364	8.7	0	1
375	9.2	0	1
167	6.5	0	0
225	7.0	0	0
247	7.2	0	0
268	7.6	0	0
288	8.7	0	0
342	9.2	0	0

It was first tried out to fit a model with solid material as response and with $\mathrm{ph}, \mathrm{Z}_{1}$ and the cross
product term between ph and z_{1} as regression variables. Output from R with this model, model 1 , is given below
> model 1=lm(solid.mat~ph+z1+ph*z1, data=material)
> summary(model 1)

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-215.410	47.623	-4.523	0.000477	**
ph	62.942	6.095	10.327	$6.26 \mathrm{e}-08$ **	
z1	254.827	81.087	3.143	0.007196 **	
ph: z1	-22.680	10.225	-2.218	0.043605 *	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' $0.05{ }^{\prime} .{ }^{\prime} 0.1$ ' ' 1
Residual standard error: 19.63 on 14 degrees of freedom
Multiple R-squared: 0.9368, Adjusted R-squared: 0.9232
F-statistic: 69.12 on 3 and 14 DF, p-value: 1.236e-08
a) Is the regression significant? Explain your answer. What is the interpretation of "Multiple Rsquared"? Show that the sum of squares for the residuals, $S S_{E}$, is 5394.72 (or approximately 5394.72) . What is the sum of squares for regression?

It was then decided to augment the model with Z_{2} and the cross product between ph and z_{2}. For this model, model 2, we get the following output from R.

```
> model 2=lm(solid.mat~ph+z1+ph*z1+z2+ph*z2, data=material)
> summary(model 2)
Call:
lm(formula = avsatt.mat ~ ph + z1 + ph * z1 + z2 + ph * z2, data = material)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -158.275 48.517 -3.262 0.0068 **
ph 53.824 6.253 8.607 1.76e-06 ***
z1 197.692 68.795 2.874 0.0140 *
z2 -108.740 71.051 -1.530 0.1518
ph:z1 -13.561 8.737 -1.552 0.1466
ph:z2 17.394 9.090 1.914 0.0798.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.59 on 12 degrees of freedom
Multiple R-squared: 0.9701, Adjusted R-squared: 0.9576
F-statistic: 77.76 on 5 and 12 DF, p-value: 1.016e-08
```

b) What is the sum of squares for the residuals with model 2 ? Perform a test in order to find out if the terms that contain Z_{2} i.e. , Z_{2} and ph:z2, can be taken out. Use a 5% level of significance.

In model $2, z_{2}$, is the least significant variable. By removing this we get the following model, model 3.

```
> model 3=lm(solid.mat~ph+z1+phz1+phz2)
> summary(model 3)
Call:
lm(formula = avsatt.mat ~ ph + z1 + ph*z1 + ph*z2)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -208.978 37.229 -5.613 8.43e-05 ***
ph 60.309 4.830 12.487 1.30e-08 ***
z1 248.395 63.328 3.922 0.00175 **
ph:z1 -20.047 8.025 -2.498 0.02669 *
ph:z2 3.581 1.134 3.159 0.00755 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.32 on 13 degrees of freedom
Multiple R-squared: 0.9642, Adjusted R-squared: 0.9532
F-statistic: 87.57 on 4 and 13 DF, p-value: 2.886e-09
```

c) Perform and construct a test in order to investigate if the cross product term between ph and Z_{2} is significant given that $\mathrm{ph}, \mathrm{z}_{1}$ and the cross product term between ph and z_{1} also are in the model. Use a 5% level of significance. Use model 3 to write down a fitted model for each of the three polymers.

Problem 3

In matrix form the linear regression model can be written as $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \boldsymbol{Y} is a $n \times 1$ vector of stochastic variables, \boldsymbol{X} is a $n \times(k+1)$ matrix and $\boldsymbol{\beta}$ a $(k+1) \times 1$ vector of parameters. Assume also that $E[\boldsymbol{\varepsilon}]=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{\varepsilon})=\sigma^{2} \boldsymbol{I}$. The least square estimator for $\boldsymbol{\beta}, \hat{\boldsymbol{\beta}}$, is given by $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{t} \boldsymbol{Y}$. Let $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{t}$
a) Show that $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}=\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{t} \boldsymbol{\varepsilon}$ and that $\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\boldsymbol{t}} \boldsymbol{X}\right)^{-1}$. Let $\boldsymbol{e}=\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}$ be the vector of residuals. Show that $\boldsymbol{e}=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{\varepsilon}$.

For a quadratic form $\boldsymbol{Y}^{t} \boldsymbol{A} \boldsymbol{Y}$, where the matrix \boldsymbol{A} is symmetric we have that $E\left(\boldsymbol{Y}^{t} \boldsymbol{A} \boldsymbol{Y}\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{V})+\boldsymbol{\mu}^{t} \boldsymbol{A} \boldsymbol{\mu}$ where $\boldsymbol{\mu}=E(\boldsymbol{Y})$ and $\boldsymbol{V}=\operatorname{Cov}(\boldsymbol{Y})$.
b) Explain why the sum of squares for the residuals, $S S_{E}$, can be written as $\boldsymbol{\varepsilon}^{t}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{\varepsilon}$ and use the result above to show that $E\left(S S_{E}\right)=(n-k-1) \sigma^{2}$. Suggest an unbiased estimator for σ^{2}.

We shall now assume that $\varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$
c) Show that $\frac{S S_{E}}{\sigma^{2}} \sim \chi^{2}(n-k-1)$ and that $\hat{\boldsymbol{\beta}}$ and $S S_{E}$ are independent.

