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Problem 1 The Multivariate Normal Distribution

a) Since Y can be written as AX where A =
(

3 −2
1 1

)
, we see that Y is a bivariate

vector of linear combinations of X. Since X is multivariate normal, then also Y will be
multivariate normal. The mean and covariance of Y is given as:

E(Y ) = Aµ =
(

3 −2
1 1

)(
1
2

)
=
(
−1
3

)

Cov(Y ) = ACov(X)AT =
(

3 −2
1 1

)(
1 0.5

0.5 2

)(
3 1
−2 1

)
=
(

11 −0.5
−0.5 4

)

Since
(
Z
Y2

)
is bivariate normal (same reason as for Y above), then Z and Y2 are

independent if Cov(Z, Y2) = 0. Let
(
Z
Y2

)
be written as BX where B =

(
1 a
1 1

)
.

Cov
(
Z
Y2

)
= B Cov(X)BT =

(
1 a
1 1

)(
1 0.5

0.5 2

)(
1 1
a 1

)
=
(

2a2 + a+ 1 3
2 + 5

2a
3
2 + 5

2a 4

)
Thus

Cov(Z, Y2) = 3
2 + 5

2a = 0

a = −3
5 = −0.6

b)

f(x) = ce−
1
2 Q(x1,x2)

c = 1
2πσ1σ2

√
1− ρ2

Q(x1, x2) = (x− µ)T Σ−1(x− µ)
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where µ1 = 1, µ2 = 2, σ1 = 1, σ2 =
√

2 and ρ = Cov(X1, X2)/(σ1σ2) = 1
2
√

2 , so that
c = 0.12.

f(x) = ce−
1
2 Q(x1,x2) = d

Q(x1, x2) = 2(ln(c)− ln(d))
(x− µ)T Σ−1(x− µ) = 2(ln(c)− ln(d)) = D2

This is an ellipse with principal axes along the eigenvectors of the covariance matrix Σ,
and half-lengths D

√
λi. See exercise E1P2 for details on this result.

Moreover, (X−µ)T Σ−1(X−µ) is distributed as χ2
2. And, the solid ellipsoid of x values

satisfying
(x− µ)T Σ−1(x− µ) ≤ χ2

2(α)

has probability 1 − α. Let α = 0.05, and we find that χ2
2(0.05) = 5.99. So, 2(ln(c) −

ln(d)) = 5.99. Solving for d gives d = exp(ln(c)− 5.99/2) = 0.006.
In the drawing the halflengths are given as

√
5.99λi, where λ1 = 2.2 and λ2 = 0.8 from

the R print-out. Halflengths are then 3.6 and 2.2. Thus, the points on the ellipse at the
principal axes are for the first principal axis (-0.4,-1.4) and (2.4,5.4), and for the second
principal axis (-1.0,2.8) and (3.0,1.2).

Problem 2 Predicting fat content in meat

a) The null- and alternative hypotheses are:

H0 : β100 = 0vs.H1 : β100 6= 0

The t-statistic is related to a t-distribution with n − p = 215 − 101 = 114 degrees of
freedom. The value of the t-statistics is -0.343. The 2.5% quantile of the t-distribution
with 114 degrees of freedom is approximately 1.98 from the statistical tables. This means
that the p-value of the test will be much larger than 0.05 and we will not reject the null
hypothesis.
How would you judge the model fit?
The regression is significant, and explains 95% of the variability in the data. A number
of the 100 coefficients looks to be significant (from Figure 4). The residual plots shows
no obvious trend, but the tail behaviour of the qq-plot looks a bit off the normal line.
However, the Andreson-Darling test will not reject the null hypothesis of normal data.
So, the model fit seems ok wrt residual analysis.
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Figure 1: Contour in Problem 1b
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What is overfitting? When there are many covariates as compared to observations (yes,
100 covariates is much compared to 215 observations) we have the potential problem of
not just fitting the signal in the data, but also the noise. Fitting the data noise is called
overfitting. Might that be a problem here? Yes, possibly. From the plot of the estimated
coefficients (Figure 4) we see that some of the estimated coefficients are very large, which
might point towards overfitting.

b) What is the mathematical definition of the principal component loadings and scores?

Let X be the random variable under study and let Σ be the population covariance
matrix. Further, let (λi, ei) be eigenvalue/vector pairs from a spectral decomposition of
the covariance matrix. The linear combination eiX is the ithe principal component, and
the ei are called the loadings and the values eiX (with the data here) are called the
scores.
Alternatively: The principal components are uncorrelated linear combinations of the
original variables, found to maximize the variance of the compontents. The PCA loadings
are the weights in the linear combinations, and are given as the eigenvectors of the
covariance or correlation matrix of the population (or data) under study. The PCA
scores are the numerical values of the linear combinations when applied to the samples.
If the number of principal components are p there are p scores for each individual sample.
In our data the first principal component have nearly equal loadings for all original
covariates, and can be seen as an average effect. The second principal component gives
a high value for the first absorbances, then low, then high and then low again. The third
principal component gives positive values for the first absorbances, and then negative
values for the last absorbances. Observe the high degree of smoothness in the loadings.
The percentage of total variance explained by the first three principal components are
99.875%.
The PC scores can be used as covariates into a regression, taking the place of the original
covariates. If all scores are used the regression in the PCs will be mathematically the
same as the regression in the original variables. If less than p scores are used, then this
will result in a shrinkage effect on the coefficients, similar to performin a rigde regression
analysis. Using a few PCs as covariates might help towards possible overfitting (and also
towards multicollinearity).

Problem 3 Design of experiments

a) Design matrix:



Tentative Solutions to TMA4267 Linear Statistical Models, August 2014 Page 5 of 7

A B C D AB
1 −1 −1 −1 1 1
2 1 −1 −1 −1 −1
3 −1 1 −1 −1 −1
4 1 1 −1 1 1
5 −1 −1 1 1 1
6 1 −1 1 −1 −1
7 −1 1 1 −1 −1
8 1 1 1 1 1

What type of experiment is this?
We see that we have a full factorial design in the factors A, B, C, but there is a fourth
factor D added. This is a half fraction of a 24 design, also called a 24−1-design.
What is the generator and the defining relation for the experiment?
The generator for the design is D=AB (which is seen from the table above after the AB
column is added). The defining relation is then I=ABD.
What is the resolution of the experiment?
The resolution of the design equals the number of letters in the defining relation, thus
the resolution is III.
Write down the alias structure of the experiment.
A=BD, B=AD, C=ABCD, D=AB
AC=BCD, BC=ACD, CD=ABC
I=ABD

Problem 4 Multiple linear regression

Define the matrix H = X(XTX)−1XT .

a) H is a symmetric projection matrix, since HT = H and HH = H . For a symmetric
and idempotent matrix the rank is equal to the trace. The rank of H is p. See proof
below.

H = X(XTX)−1XT

HT = (X(XTX)−1XT )T = X(XTX)−1XT = H

H2 = (X(XTX)−1XT )X(XTX)−1XT = X(XTX)−1XT = H

tr(H) = tr(X(XTX)−1XT ) = tr(XTX(XTX)−1) = tr(Ip×p) = p
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Graphically: The vector HY is a projection of the vector Y onto the space spanned by
the columns of X.
The matrix I −H is also symmetric and idempotent, and thus a symmetric projection
matrix. The rank of I −H is n− p. See proof below.

(I −H)T = I −HT = I −H
(I −H)2 = (I −H)(I −H) = I − 2H +H2 = I −H

tr(I −H) = tr(In×n)− tr(H) = n− p

Graphically: The vector (I −H)Y is a projection of the vector Y onto the space othogonal
to the space spanned by the columns of X.

b) Let SSE = Y T (I −H)Y . Derive the distribution of SSE.

One of the key theorems of this course (theorem 3.26 in Bingham&Fry), state that
if D is a symmetric and idempotent matrix with rank r and Z ∼ Nn(0, σ2I), then
ZTDZ ∼ σ2χ2

r.
We haveD = (I−H) symmetric and idempotent with rank n−p, and Y ∼ Nn(Xβ, σ2I).
To use the theorem we need to look at Y ∗ = Y −Xβ ∼ Nn(0, σ2I).

(I −H)Y ∗ = (I −H)(Y −Xβ)
= (I −H)Y − (I −H)Xβ = (I −H)Y − (Xβ −HXβ) =
= (I −H)Y − (Xβ −Xβ) = (I −H)Y

since HX = X(XTX)−1XTX = X. Projecting X onto the space spanned by the
columns of X gives X.
Thus, we have shown that Y T (I−H)Y = Y ∗T (I−H)Y ∗, and we may use the theorem
to conclude that SSE ∼ σ2χ2

n−p.
The mean of a χ2-distributed variable equals the number of degrees of freedom, so

E(SSE
σ2 ) = n− p

E(SSE) = (n− p)σ2

E( SSE
n− p

) = σ2
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Thus, σ̂2 = SSE
n−p

will be an unbiased estimator for σ2.
Variance:

Var
(

SSE
n− p

)
= 1

(n− p)2 Var(SSE) = 1
(n− p)2 Var(σ2SSE

σ2 )

= 1
(n− p)2 2(n− p)σ4 = 2σ4

n− p

c)

A = (XTX)−1XT

B = I −H = I −X(XTX)−1XT

Here A is a p × n matrix (since X is n × p), and B is the same dimension as H , that
is, n× n, and is symmetric and idempotent (found previously).
Since Y ∼ Nn(Xβ, σ2I) thenAY andBY are independent random variables if σ2ABT =
0.

ABT = (XTX)−1XT (I −X(XTX)−1XT )
= (XTX)−1XT − (XTX)−1XTX(XTX)−1XT

= (XTX)−1XT − (XTX)−1XT = 0

We have proven that Z1 = AY and Z2 = BY are independent random variables. Then
it follows that Z1 and ZT

2Z2 are also independent random variables. Since Z1 = β̂

and ZT
2Z2 = Y TBY = SSE, we have proven that β̂ and SSE are independent random

variables.
Use in MLR: The independence of β̂ and SSE is used in the construction of a t-test for
hypothesis about β.


