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Problem 1 Random vector

Let X =

 X1
X2
X3

 be a random vector with mean µ = E(X) =

 1
1
1

 and covari-

ance matrix Σ = Cov(X) = I =

 1 0 0
0 1 0
0 0 1

. Further, letA =


2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3


be a matrix of constants.

Define Y =

 Y1
Y2
Y3

 = AX.

a) Find E(Y ) and Cov(Y ).
Are X1 and X2 independent?
Are Y1 and Y2 independent? Justify your answers.
Find the mean of XTAX.

For the rest of this problem assume that X is trivariate normal with mean µ and
covariance matrix Σ given in the start of this problem.

b) Show that A is a symmetric projection matrix. Find the rank of A.
Derive the distribution of XTAX.
Find the probability that XTAX is smaller than 6.

Problem 2 Galapagos species

This data set concerns the number of species of tortoise on the various Galapagos
Islands, and is taken from the book “Practical Regression and Anova using R” by
Julian J. Faraway.

The data set contains measurements on 30 islands, and we study the following 6
variables:

• Species: The number of species of tortoise found on the island.

• Area: The area of the island (km2).

• Elevation: The highest elevation of the island (m).

• Nearest: The distance from the nearest island (km).

• Scruz: The distance from Santa Cruz island (km).

• Adjacent: The area of the adjacent island (km2).
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Summary statistics are given below for the Galapagos data set.

Summary statistics for the Galapagos data set
Species Area Elevation Nearest Scruz Adjacent

Min. 2.00 0.0100 25.00 0.20 0.00 0.03
1st Qu. 13.00 0.2575 97.75 0.80 11.02 0.52
Median 42.00 2.5900 192.00 3.05 46.65 2.59
Mean 85.23 261.7000 368.00 10.06 56.98 261.10
3rd Qu. 96.00 59.2400 435.20 10.02 81.08 59.24
Max. 444.00 4669.0000 1707.00 47.40 290.20 4669.00

A multiple linear regression model was fitted to the Galapagos data set, with
Species as response and the remaining five variables as covariates. Call this
Model A. Code and printout from R is found in Figure 1 and accompanying plots
in Figures 2 and 3.

a) Write down the fitted regression model, and comment briefly on the model
fit. What conclusions can you draw from the residual plots and the Box–Cox
transformation plot?

The cube root transformation of Species will from now on be used as response
in a new multiple linear regression model, with the same five covariates as for
Model A. Call this Model B. Code and printout from R is found in Figure 4 and
accompanying plots in Figure 5.

b) In the printout in Figure 4 from fitting Model B four numerical values are
substituted by question marks. Calculate numerical values for each of these,
and explain what each of the numbers means.
Would you prefer Model B to Model A? Justify briefly your answer.

c) The results from performing best subset selection is reported in Figure 6,
where also R2 and R2

adj is listed numerically for the five models reported.
Write down the definition for R2 and R2

adj and explain how you can use these
to compare the different models.
Choose the “best” out of these five models. Justify your choice.
Finally, the results from fitting lasso regression to the Galapagos data set is
reported in Figure 7.
Explain what the lasso regression does differently from least squares regres-
sion.
Can R2

adj be used to select the penalty parameter for lasso? Justify your
answer.
Write down the fitted regression model for the lasso regression.
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> fit1 <- lm(Species~Area+Elevation+Nearest+Scruz+Adjacent,
data=gala)
> summary(fit1)

Call:
lm(formula = Species ~ Area + Elevation +

Nearest + Scruz + Adjacent,
data = gala)

Residuals:
Min 1Q Median 3Q Max

-111.679 -34.898 -7.862 33.460 182.584

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.068221 19.154198 0.369 0.715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06 ***
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208
Adjacent -0.074805 0.017700 -4.226 0.000297 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

> plot(fit1$fitted,rstudent(fit1))
> qqnorm(rstudent(fit1))
> qqline(rstudent(fit1))
> ad.test(rstudent(fit1))

Anderson-Darling normality test
data: rstudent(fit1)
A = 1.7071, p-value = 0.0001729
> boxcox(fit1)
> abline(v=1/3,lty=1)

Figure 1: Printout from statistical analyses for Model A for the Galapagos data
set.
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Figure 2: Residual plots (studentized residual versus fitted values in the left panel,
normal plot based on studentized residuals in the right panel) for Model A for the
Galapagos data set.
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Figure 3: Box–Cox tranformation plot based on Model A for the Galapagos data
set.
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> fit2 <- lm(Species^(1/3)~Area+Elevation+Nearest+Scruz+Adjacent,
x=TRUE,data=gala)
> summary(fit2)

Call:
lm.default(formula = Species^(1/3) ~ Area + Elevation + Nearest +

Scruz + Adjacent, data = gala, x = TRUE)

Residuals:
Min 1Q Median 3Q Max

-1.54306 -0.47863 -0.08499 0.56349 1.83283

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) ? 0.3052013 7.365 1.32e-07
Area -0.0007349 0.0003573 -2.057 ?
Elevation 0.0054510 0.0008551 6.375 1.37e-06
Nearest 0.0118152 ? 0.703 0.48855
Scruz -0.0045951 0.0034322 -1.339 0.19317
Adjacent -0.0010597 0.0002820 -3.757 0.00097
---
Residual standard error: 0.9716 on 24 degrees of freedom
Multiple R-squared: 0.7543, Adjusted R-squared: ?
F-statistic: 14.74 on 5 and 24 DF, p-value: 1.192e-06

> plot(fit2$fitted,rstudent(fit2))
> qqnorm(rstudent(fit2))
> qqline(rstudent(fit2))
> ad.test(rstudent(fit2))

Anderson-Darling normality test
data: rstudent(fit2)
A = 0.2639, p-value = 0.6738

Figure 4: Printout from R of fitting the multiple linear regression model B for the
Galapagos island data set. Response is cube root of Species.
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Figure 5: Residual plots (studentized residual versus fitted values in the left panel,
normal plot based on studentized residuals in the right panel) for Model B (cube
root of Species) for the Galapagos data set.

> x <- fit2$x[,-1]
> y <- gala$Species^(1/3)
> library(leaps)
> bests <- regsubsets(x,y)
> sumbests <- summary(bests)
> sumbests
Subset selection object
5 Variables (and intercept)
1 subsets of each size up to 5
Selection Algorithm: exhaustive

Area Elevation Nearest Scruz Adjacent
1 ( 1 ) " " "*" " " " " " "
2 ( 1 ) " " "*" " " " " "*"
3 ( 1 ) "*" "*" " " " " "*"
4 ( 1 ) "*" "*" " " "*" "*"
5 ( 1 ) "*" "*" "*" "*" "*"
> plot(1:5, sumbests$rsq,type="l") #solid line
> lines(1:5, sumbests$adjr2,lty=2) #dashed line
> sumbests$rsq # R^2
[1] 0.5570784 0.6893784 0.7356845 0.7492704 0.7543353
> sumbests$adjr2 # R^2_adjusted
[1] 0.5412597 0.6663694 0.7051866 0.7091536 0.7031552

Figure 6: Printout from R of fitting best subset selection to the Galapagos island
data set. Response is cube root of Species.
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> library(glmnet)
> fit.lasso=glmnet(x,y)
> cv.lasso=cv.glmnet(x,y)
> coef(cv.lasso)
6 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) 3.5388701794
Area .
Elevation 0.0002804519
Nearest .
Scruz .
Adjacent .

Figure 7: Printout from R after fitting lasso regression to the Galapagos data-set.
Response is cube root of Species.

Problem 3 Design of experiments

In a pilot study with four factors A, B, C and D, the 8 experiments listed below
were run.

A B C D
1 −1 −1 −1 1
2 1 −1 −1 1
3 −1 1 −1 −1
4 1 1 −1 −1
5 −1 −1 1 −1
6 1 −1 1 −1
7 −1 1 1 1
8 1 1 1 1

a) What type of experiment is this?
What is the generator and the defining relation for the experiment?
What is the resolution of the experiment?
Write down the alias structure of the experiment.

Problem 4 Multiple linear regression

The classical multiple linear regression (MLR) model can be written in matrix
notation as

Y = Xβ + ε,
where Y is an n-dimensional random column vector, X is a fixed design matrix
with n rows and p columns, β is an unknown p-dimensional vector of regression
coefficients and ε is an n-dimensional column vector of random errors.
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Further, in the classical multiple linear model we generally assume that the vector
of random errors ε is multivariate normal with mean E(ε) = 0 and covariance
matrix Cov(ε) = σ2I, where I is the n× n identity matrix.

We will now study slightly different situation. Assume that ε is multivariate
normal with mean E(ε) = 0 and covariance matrix Cov(ε) = σ2V , where V is a
known positive definite n× n matrix. The unknown parameters in this model are
the regression coefficients β and the variance parameter σ2.

a) Write down and explain the definition of the inverse square root matrix V − 1
2 .

Use the inverse square root matrix to define three new quantities
Y ∗ = V − 1

2Y ,

X∗ = V − 1
2X,

ε∗ = V − 1
2ε.

Use these new quantities together with the method of least squares to derive
an unbiased estimator for β, in terms of X, V and Y .
Show that the estimator is unbiased.
Is the ordinary least square estimator β̂ = (XTX)−1XTY unbiased in this
model? Justify your answer. Comment on your findings.

We go back to the classical MLR with identically normally distributed random
errors, Cov(ε) = σ2I, but now look at misspecification of E(Y ). Suppose that the
true model is

Y = X1β1 +X2β2 + ε,
ε ∼ Nn(0, σ2I),

(1)

where we have partitioned the design matrix into two parts X1 (n × p1) and X2
(n× p2) and β1 and β2 are unknown p1- and p2-dimensional vectors of regression
coefficients (p = p1 + p2).

Assume that we ignore the covariates in X2 and fit the model
Y = X1α1 + δ,
δ ∼ Nn(0, τ 2I).

(2)

Here α1 is used in place of β1 to emphasize that α1 (and estimates thereof) will
in general be different from β1 in the true model.

The least squares estimator for model (2) is α̂1 = (XT
1X1)−1XT

1Y .

b) Find the mean and covariance matrix of α̂1 under the true model (1).
Under which conditions is α̂1 an unbiased estimator of β1? Justify your
answer.


