TMA4267 Linear Statistical Models V2017 (L11)

Part 2: Linear regression:

Parameter estimation [F:3.2] and model selection [F:3.4]
Hypothesis test for one regression coefficient
Studentized and standardized residuals
decomposition of variability and signficance of regression
R?, SPSE=Expected squared prediction error
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Today

1. Hypothesis testing for ;.

2. Residuals: standardized (or studentized) preferred.
3. Decomposition of variability: SST=SSR+SSE, and

significance of regression.

R? gives the proportion of variability explained by the
regression model. and will never decrease if new covariates are
added to the model.

5. Model choice considerations.

6. SPSE: Expected squared prediction error.
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The classical linear model

The model
Y=XB+¢
is called a classical linear model if the following is true:
1. E(e) =0.
2. Cov(e) = E(ee) = o2I.
3. The design matrix has full rank rank(X) = k+ 1 = p.

The classical normal linear regression model is obtained if
additionally

1. & ~ N,(0,021)

holds. For random covariates these assumptions are to be
understood conditionally on X.
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Properties for the normal linear model

» Least squares and maximum likelihood estimator for 3:

A

B=(X"X)xTy
with B ~ N,(8,02(XTX)™1).
» Restricted maximum likelihood estimator for o2:

~ 1
o2 =

. A SSE
Y XD Y - XB) = —

~2
: - 2
with % ~ Xn—p-
» Statistic for inference about f3;, ¢j; is diagonal element j of
(XTX)L.
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Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of

>

>

>

>

>

>

>

x1:
x2:
x3:
x4:
xb5:
x6:
X7

S04 sulfate (the salt of sulfuric acid),

NOs3: nitrate (the conjugate base of nitric acid),
Ca: calsium,

latent Al: aluminium,

organic substance,

area of lake,

position of lake (Telemark or Trgndelag),

Random sample of n = 26 lakes.
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Output from fitting the full model in R

> fit=1m(y~.,data=ds)
> summary (fit)
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 **x

x1 -0.3150444 0.0587512 -5.362 4.27e-05 *xx

x2 -0.0018533 0.0012587 -1.472 0.158

x3 0.9751745 0.1449075 6.730 2.62e-06 *x*x

x4 -0.0002268 0.0010038 -0.226 0.824

x5 -0.0334242 0.0225009 -1.485 0.155

x6 -0.0039399 0.0724339 -0.054 0.957

x7 0.0888722 0.1025724 0.866 0.398

Signif. codes: 0 ?*¥x’ 0.001 ’**’ 0.01 ’%” 0.05 >.” 0.1 > ? 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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Quantiles and critical values: N og t: «/2 = 0.025

0.3

0.2

1.96

0.1

-2.09 —— standardnormal 2.09
— tdf=19
226 2.26
’ — tdf=9 \
o a/ &
S
T T T
-4 -2 0 2 4

In R: specify area to the left, but our notation gives area to the
right. Fahrmeir et al: notation with area to the left.

6/30



Properties of the residuals

w:e=Y-Y.
> with mean E(é) 0 and covariance matrix
Cov(é) = o?(1 — H) where H = X(XTX)"'XxT.
> In the normal model & ~ N,(0,021) and then also the vector
of residuals are normal, but with heteroscedastic variances and
non-zero covariances.

» Residuals (ra

» Standardized residuals: divide (raw) residuals by estimated
standard deviation.

» Studentized residuals: leave-one-out version.

» Studentized residuals are compared with the normal
distribution to assess normality of the error term.
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3.12 Overview of Residuals

Ordinary Residuals

The residuals are given by

Standardized Residuals

The standardized residuals are defined by

&
61— hi

where /;; is the ith diagonal element of the hat matrix.

ri =

Studentized Residuals

The studentized residuals are defined by

The studentized residuals are used to verify model assumptions and to
discover outliers (see Sect. 3.4.4).

Box from our text book: Fahrmeir et al (2013): Regression.

Springer. (p.126)

A 1/2
o 20! _ éi _r(nfpfl)/

F == = - = .
eI+ XXX o) T )2 64V T =Ty n—p-—r?
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Simulating data and checking residuals

n=1000

beta=matrix(c(0,1,1/2,1/3) ,ncol=1)

set.seed(123)

x1=rnorm(n,0,1); x2=rnorm(n,0,2); x3=rnorm(n,0,3)
X=cbind(rep(1l,n),x1,x2,x3)

y=X%*%beta+rnorm(n,0,2)

fit=1m(y~x1+x2+x3)

yhat=predict (fit)

summary (fit)

ehat=residuals(fit); estand=rstandard(fit); estud=rstudent(fit)
plot(yhat,ehat,pch=20)

points(yhat,estand,pch=20,col=2)
#points(yhat,estud,pch=20,col=5)
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residuals

-2
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yhat

Black: raw residuals, red: standardized residuals (identical to

ctiidentized here) 10/30



Examination of model assumptions

AR

Linearity of covariates: Y = X3+ ¢

Homoscedastic error variance: Cov(g) = o°1.

Uncorrelated errors: Cov(ej,ej) = 0.
Additivity of errors: Y = X3+¢
Assumption of normality: € ~ N,(0,c°1)
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Plotting residuals

1. Plot the residuals, r/ against the predicted values, ;.
» Dependence of the residuals on the predicted value: wrong
regression model?
» Nonconstant variance: transformation or weighted least
squares is needed?
2. Plot the residuals, r7, against predictor variable or functions of
predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, r7, versus time or collection order (if
possible). Look for dependence or autocorrelation.
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Volume of a tree

Data for 31 trees of a certain kind in a national park in the US are
given below. Three variables are measured for each tree. These are:

» D: The diameter of the tree measured in inches 1.5 m above

ground level

» H: The height of the tree measured in feet.
» V: The volume of the tree measured in cubic feet.

Obs.

CONOU A WNKH

D
8.3
8.6
8.8

10.5
10.7
10.8
11.0
11.0
11.1
11.2
11.3
11.4
11.4
11.7
12.0
12.9

H
70
65
63
72
81
83
66
75
80
75
79
76
76
69
75
74

v
10.3
10.3
10.2
16.4
18.8
19.7
15.6
18.2
22.6
19.9
24.2
21.0
21.4
21.3
19.1
22.2

Obs.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

D
129
13.3
13.7
13.8
14.0
14.2
14.5
16.0
16.3
17.3
17.5
17.9
18.0
18.0
20.6

H
85
86
71
64
78
80
74
72
77
81
82
80
80
80
87

v
33.8
27.4
25.7
24.9
34.5
31.7
36.3
38.3
42.6
55.4
55.7
58.3
51.5
51.0
77.0
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Volume of a tree

> If one wants to measure the volume of a tree the tree has to
be cut down.

» But, height and diameter can be measured without cutting
down the tree.

» Of interest: develop a model that can be used to estimate the
tree volume from the height and diameter.

As an illustration assume we want to fit a linear model with V as
response and D and H as covariates. What is the R? of this model?

Comment: if we start with the volume of a cylinder (area of circle times
height) we may suggest a different regression model (on the log scale).
Which model?
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Volume: height and diameter

fit <- 1Im(Volume~.,data=ds)

summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 **x
Diameter 4.7082 0.2643 17.816 < 2e-16 *x*x
Height 0.3393 0.1302 2.607 0.0145 =*

Signif. codes: O ’*%%’ 0.001 ’*x’ 0.01 ’%’ 0.05 .7 0.1’
Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Volume of a tree: 1Q of lumberjack added

» We want to add the 1Q of the lumberjack that cut down the
tree as a covariate in the model.

» This should for obvious reasons not be a good predictor for the
volume of the tree.

» To mimic this situation we simulate new data to resemble the
IQ of different lumberjacks by drawing data from the normal
distribution with mean 100 and standard deviation 16, and
since we have 31 trees we simulate 31 observations.

» Q: will the R? of this new model be higher than the R? of the
previous model?
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Volume: height and diameter — and IQ of lumberjack

set.seed(123) # reproducible results

iq <- rnorm(31,100,16)

fit2 <- 1m(Volume~Height+Diameter+iq,data=ds)
summary (£it2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -61.03399 10.20868 -5.979 2.24e-06 *x*x*

Height 0.34099 0.13176 2.588 0.0154 =*
Diameter 4.72507 0.26906 17.561 2.68e-16 ***
iq 0.02704 0.04678 0.578 0.5681

Signif. codes: O ’*xx’ 0.001 ’*x> 0.01 ’x> 0.05 *.” 0.1 °

Residual standard error: 3.929 on 27 degrees of freedom
Multiple R-squared: 0.9486,Adjusted R-squared: 0.9429
F-statistic: 166.1 on 3 and 27 DF, p-value: < 2.2e-16
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Acid rain in Norwegian lakes

Data on n = 26 lakes, with
» y: measured pH in lake,
» x1: SOs: sulfate (the salt of sulfuric acid),
» x2: NOs: nitrate (the conjugate base of nitric acid),
» x3: Ca: calsium,
» x4: latent Al: aluminium,
» x5: organic substance,
> x6: area of lake,
» x7: position of lake (Telemark or Trgndelag),

We would like to use a regression model with pH of the lake as the
response. Should we fit a model will all 7 covariates, or choose a
subset?

18/30



Simulated data (Fahrmeir et al: Fig 3.17)

True model:
Yi = Bo + Bixi + Box? + Bax} + &

Known that the model is polynomial in nature, but not up to which
degree.
Try to fit polynomial also with higher order terms.

New: in addition to the data set to be used to fit the regression
(called training set) also a data set to assess the model fit is
present (called a validation set).

Mean Squared Error (MSE) is a scaled version of the SSE, that is
1 N

5 i (Y= Vi)
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raining data valcation data
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Fig. 3.17 Simulated training data y; [panel ()] and validation data y* [panel (b)] based on 50
design points x;,i = 1,....50. The true model used for simulation is y; = —1+0.3x; +0.4x7 —
0.8x] + & with &; ~ N(0,0.07%). Panels (c-€) show estimated polynomials of degree / = 1,2,5
based on the training set. Panel (f) displays the mean squared error MSE(/) of the fitted values
in relation to the polynomial degree (solid line). The dashed line shows MSE(!), if the estimated
polynomials are used to predict the validation data y;*

Figure from our text book: Fahrmeir et al (2013): Regression. Springer. (p.140) 20/30



Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ~ N(—1+0.3x; + 0.2x3,0.2%)

where also xp = x; + u is observed (u ~ uniform in 0,1). The
variables x; and x3 are uncorrelated.
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scatter plot matrix for y, x1, x2, x3
0 5 1

o % u®
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R
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u

‘ig. 3.18 Scatter plot matrix for the variables y, x|, X2, and x3

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)
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Table 3.3 Results for the model based on covariates xj, xp, and x3

Variable Coefficient
intercept —0.970
X1 0.146
X2 0.027
X3 0.227

Standard error t-value p-value 95 % Confidence interval
0.047 —20.46 <0.001 —1.064 —0.877
0.187 0.78 0.436 —0.224 0.516
0.177 0.15 0.880 —0.323 0.377
0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x; and x3

Variable Coefficient
intercept —0.967
X1 0.173
X3 0.226

Standard error t-value p-value 95 % Confidence interval
0.039 —24.91 <0.001 —1.042 —0.889
0.055 3.17 0.002 0.065 0.281
0.052 433 <0.001 0.123 0.330

Table from our text book: Fahrmeir et al (2013): Regression.

Springer. (p.142)
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.
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Two subsets of covariates (Exam V2014 Problem 4b)

Classical linear model with identically normally distributed random
errors, Cov(e) = o1, but now look at misspecification of E(Y).
Suppose that the true model is

Y = X181 + X203, + ¢,

e ~ N,(0,521), (1)

where we have partitioned the design matrix into two parts X1
(nx p1) and X2 (n x p2) and B; and B, are unknown p;- and
p2-dimensional vectors of regression coefficients (p = p1 + p2).
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Two subsets of covariates (cont.)

Assume that we ignore the covariates in X5 and fit the model

Y = X171 + 6,

2
8 ~ N,(0,721). @)

Here a; is used in place of 3; to emphasize that a1 (and estimates

thereof) will in general be different from (3 in the true model.

The least squares estimator for model (2) is

dy = (X{ X)) 1x]v.
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Two subsets of covariates (cont.)

Find the expected value and covariance matrix of &1 under the true
model.

E(d1) = B; + (X{ X1) 7' X] X2,

We see that the bias term for &y is (X{ X1)™'X{ X28,. When is
the bias term equal to zero?

Cov(d;) = o?(X{ X1)7t

Observe, Cov(d1) is not dependent on [3,.
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Missing covariates: findings

Bias

Variance

: The estimator for the (true) covariates (in the
model) is only unbiased if the true and missing
covariates are uncorrelated (orthogonal design) in the
data.

: The variance of the estimator for the true covariates
may be smaller based on the model with the missing
covariates (than for the correctly specified model),
and even the sum of the bias? and the variance may
better for the model with the missing variables. So
the sparse model may be better on overall (even
though it is biased).
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Irrelevant covariates included: findings

Bias : The estimator for the true covariates are unbiased,
also if irrelevant covariates are included.

Variance : The model with the irrelevant covariants have larger
variance for the true covariates, compared with the
model without the irrelevant covariates. So, again
sparse model is the best.
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.

Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
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Law of parsimony

If two models are not very different — then always choose the
simplest one
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Today

» T-test for significance of one regression coefficient.

» Residuals: standardized (or studentized) preferred.

» Significance of regression based on F-test with SSR/(p-1)
divided by SST/(n-1).

» R? gives the proportion of variability explained by the
regression model.

SSR SSE
2 _ _— = _—
R = SST ! SST

and will never decrease if new covariates are added to the
model.

» Model selection: want to choose the model that minimize the
expected squared prediction error.
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