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Part 2: Linear regression:

Parameter estimation [F:3.2] and model selection [F:3.4]
Hypothesis test for one regression coefficient

Studentized and standardized residuals
decomposition of variability and signficance of regression

R2, SPSE=Expected squared prediction error

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: February 21, 2017

1 / 30



Today

1. Hypothesis testing for βj .
2. Residuals: standardized (or studentized) preferred.
3. Decomposition of variability: SST=SSR+SSE, and

significance of regression.
4. R2 gives the proportion of variability explained by the

regression model. and will never decrease if new covariates are
added to the model.

5. Model choice considerations.
6. SPSE: Expected squared prediction error.
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The classical linear model

The model
Y = Xβ + ε

is called a classical linear model if the following is true:
1. E(ε) = 0.
2. Cov(ε) = E(εεT ) = σ2I .
3. The design matrix has full rank rank(X ) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally
1. ε ∼ Nn(0, σ2I )

holds. For random covariates these assumptions are to be
understood conditionally on X .
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Properties for the normal linear model

I Least squares and maximum likelihood estimator for β:

β̂ = (XTX )−1XTY

with β̂ ∼ Np(β, σ
2(XTX )−1).

I Restricted maximum likelihood estimator for σ2:

σ̂2 =
1

n − p
(Y − X β̂)T (Y − X β̂) =

SSE
n − p

with (n−p)σ̂2

σ2 ∼ χ2
n−p.

I Statistic for inference about βj , cjj is diagonal element j of
(XTX )−1.

Tj =
β̂j − βj√

cjj σ̂
∼ tn−p
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Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

Random sample of n = 26 lakes.
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Output from fitting the full model in R

> fit=lm(y~.,data=ds)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6764334 0.1389162 40.862 < 2e-16 ***
x1 -0.3150444 0.0587512 -5.362 4.27e-05 ***
x2 -0.0018533 0.0012587 -1.472 0.158
x3 0.9751745 0.1449075 6.730 2.62e-06 ***
x4 -0.0002268 0.0010038 -0.226 0.824
x5 -0.0334242 0.0225009 -1.485 0.155
x6 -0.0039399 0.0724339 -0.054 0.957
x7 0.0888722 0.1025724 0.866 0.398
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1165 on 18 degrees of freedom
Multiple R-squared: 0.93,Adjusted R-squared: 0.9027
F-statistic: 34.15 on 7 and 18 DF, p-value: 3.904e-09
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Quantiles and critical values: N og t: α/2 = 0.025

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

standardnormal
t df=19
t df=9

−1.96
−2.09
−2.26

1.96
2.09
2.26

In R: specify area to the left, but our notation gives area to the
right. Fahrmeir et al: notation with area to the left.
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Properties of the residuals

I Residuals (raw): ε̂ = Y − Ŷ .
I with mean E(ε̂) = 0 and covariance matrix

Cov(ε̂) = σ2(I −H) where H = X (XTX )−1XT .
I In the normal model ε ∼ Nn(0, σ2I ) and then also the vector

of residuals are normal, but with heteroscedastic variances and
non-zero covariances.

I Standardized residuals: divide (raw) residuals by estimated
standard deviation.

I Studentized residuals: leave-one-out version.
I Studentized residuals are compared with the normal

distribution to assess normality of the error term.
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126 3 The Classical Linear Model

3.12 Overview of Residuals

Ordinary Residuals

The residuals are given by

O"i D yi ! Oyi D yi ! x0
i
Ǒ i D 1; : : : ; n:

Standardized Residuals

The standardized residuals are defined by

ri D O"i

O!
p

1 ! hii

;

where hii is the i th diagonal element of the hat matrix.

Studentized Residuals

The studentized residuals are defined by

r!
i D O".i/

O!.i /.1 C x0
i .X

0
.i /X .i //"1xi /1=2

D O"i

O!.i /

p
1 ! hii

D ri

!
n ! p ! 1

n ! p ! r2
i

"1=2

:

The studentized residuals are used to verify model assumptions and to
discover outliers (see Sect. 3.4.4).

Partial Residuals

The partial residuals regarding covariate xj are defined by

O"xj ;i D yi ! Ǒ
0 ! : : :! Ǒ

j !1xi;j !1 ! Ǒ
j C1xi;j C1 ! : : :! Ǒ

kxik D O"i C Ǒ
j xij :

In the partial residuals O"xj ;i , all covariate effects with the exception of
the one associated with xj are removed. Hence, they are very useful for
exploring whether the influence of xj is modeled correctly (see Sect. 3.4.4).

Example 3.12 Munich Rent Index—Hypothesis Testing
We revisit the data from the Munich rent index to illustrate hypothesis testing. We use
the data for the 1999 rent index, in combination with the follow-up data from 2001; see
Example 3.7 (p. 100). Consider the regression model

rentsqmi D ˇ0 C ˇ1 areainvci C ˇ2 yearcoi C ˇ3 yearco2i

C ˇ4 yearco3i C ˇ5 nkitchen C ˇ6 pkitchen C ˇ7 year01 C "i ;
(3.25)

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.126)
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Simulating data and checking residuals

n=1000
beta=matrix(c(0,1,1/2,1/3),ncol=1)
set.seed(123)
x1=rnorm(n,0,1); x2=rnorm(n,0,2); x3=rnorm(n,0,3)
X=cbind(rep(1,n),x1,x2,x3)

y=X%*%beta+rnorm(n,0,2)
fit=lm(y~x1+x2+x3)
yhat=predict(fit)
summary(fit)
ehat=residuals(fit); estand=rstandard(fit); estud=rstudent(fit)
plot(yhat,ehat,pch=20)
points(yhat,estand,pch=20,col=2)
#points(yhat,estud,pch=20,col=5)
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Examination of model assumptions

1. Linearity of covariates: Y = Xβ + ε

2. Homoscedastic error variance: Cov(ε) = σ2I .
3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ+ε
5. Assumption of normality: ε ∼ Nn(0, σ2I )
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Plotting residuals
1. Plot the residuals, r∗i against the predicted values, ŷi .

I Dependence of the residuals on the predicted value: wrong
regression model?

I Nonconstant variance: transformation or weighted least
squares is needed?

2. Plot the residuals, r∗i , against predictor variable or functions of
predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.

3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be
used, but must be interpreted with caution since for small
sample sizes the test is not very powerful and for large sample
sizes even very small deviances from normality will be labelled
as significant.

4. Plot the residuals, r∗i , versus time or collection order (if
possible). Look for dependence or autocorrelation.
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Volume of a tree
Data for 31 trees of a certain kind in a national park in the US are
given below. Three variables are measured for each tree. These are:

I D: The diameter of the tree measured in inches 1.5 m above
ground level

I H: The height of the tree measured in feet.
I V : The volume of the tree measured in cubic feet.

Obs. D H V Obs. D H V
1 8.3 70 10.3 17 12.9 85 33.8
2 8.6 65 10.3 18 13.3 86 27.4
3 8.8 63 10.2 19 13.7 71 25.7
4 10.5 72 16.4 20 13.8 64 24.9
5 10.7 81 18.8 21 14.0 78 34.5
6 10.8 83 19.7 22 14.2 80 31.7
7 11.0 66 15.6 23 14.5 74 36.3
8 11.0 75 18.2 24 16.0 72 38.3
9 11.1 80 22.6 25 16.3 77 42.6

10 11.2 75 19.9 26 17.3 81 55.4
11 11.3 79 24.2 27 17.5 82 55.7
12 11.4 76 21.0 28 17.9 80 58.3
13 11.4 76 21.4 29 18.0 80 51.5
14 11.7 69 21.3 30 18.0 80 51.0
15 12.0 75 19.1 31 20.6 87 77.0
16 12.9 74 22.2
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Volume of a tree

I If one wants to measure the volume of a tree the tree has to
be cut down.

I But, height and diameter can be measured without cutting
down the tree.

I Of interest: develop a model that can be used to estimate the
tree volume from the height and diameter.

As an illustration assume we want to fit a linear model with V as
response and D and H as covariates. What is the R2 of this model?

Comment: if we start with the volume of a cylinder (area of circle times
height) we may suggest a different regression model (on the log scale).
Which model?
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Volume: height and diameter

fit <- lm(Volume~.,data=ds)
summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948,Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Volume of a tree: IQ of lumberjack added

I We want to add the IQ of the lumberjack that cut down the
tree as a covariate in the model.

I This should for obvious reasons not be a good predictor for the
volume of the tree.

I To mimic this situation we simulate new data to resemble the
IQ of different lumberjacks by drawing data from the normal
distribution with mean 100 and standard deviation 16, and
since we have 31 trees we simulate 31 observations.

I Q: will the R2 of this new model be higher than the R2 of the
previous model?
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Volume: height and diameter – and IQ of lumberjack
set.seed(123) # reproducible results
iq <- rnorm(31,100,16)
fit2 <- lm(Volume~Height+Diameter+iq,data=ds)
summary(fit2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -61.03399 10.20868 -5.979 2.24e-06 ***
Height 0.34099 0.13176 2.588 0.0154 *
Diameter 4.72507 0.26906 17.561 2.68e-16 ***
iq 0.02704 0.04678 0.578 0.5681
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.929 on 27 degrees of freedom
Multiple R-squared: 0.9486,Adjusted R-squared: 0.9429
F-statistic: 166.1 on 3 and 27 DF, p-value: < 2.2e-16
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Acid rain in Norwegian lakes

Data on n = 26 lakes, with
I y: measured pH in lake,
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),

We would like to use a regression model with pH of the lake as the
response. Should we fit a model will all 7 covariates, or choose a
subset?
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Simulated data (Fahrmeir et al: Fig 3.17)

True model:

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi

Known that the model is polynomial in nature, but not up to which
degree.
Try to fit polynomial also with higher order terms.

New: in addition to the data set to be used to fit the regression
(called training set) also a data set to assess the model fit is
present (called a validation set).

Mean Squared Error (MSE) is a scaled version of the SSE, that is
1
n

∑n
i=1(Yi − Ŷi )

2.

19 / 30



140 3 The Classical Linear Model

y

−1.2

−1.1

−1

−.9

−.8

−.7

0 .2 .4 .6 .8 1
x

training data

y

−1.2

−1.1

−1

−.9

−.8

−.7

0 .2 .4 .6 .8 1
x

validation data

−1.2

−1.1

−1

−.9

−.8

−.7

0 .2 .4 .6 .8 1

x

regression line

−1.2

−1.1

−1

−.9

−.8

−.7

0 .2 .4 .6 .8 1

x

polynomial regression with l=2

−1.2

−1.1

−1

−.9

−.8

−.7

0 .2 .4 .6 .8 1

x

polynomial regression with l=5

.003

.004

.005

.006

.007

.008

0 1 2 3 4 5 6 7 8 9

degree of polynomial

MSE for training and validation data

a b

c

e f

d

Fig. 3.17 Simulated training data yi [panel (a)] and validation data y!
i [panel (b)] based on 50

design points xi , i D 1; : : : ; 50. The true model used for simulation is yi D !1C0:3xi C0:4x2
i !

0:8x3
i C "i with "i " N.0; 0:072/. Panels (c–e) show estimated polynomials of degree l D 1; 2; 5

based on the training set. Panel (f) displays the mean squared error MSE.l/ of the fitted values
in relation to the polynomial degree (solid line). The dashed line shows MSE.l/, if the estimated
polynomials are used to predict the validation data y!

i

Figure from our text book: Fahrmeir et al (2013): Regression. Springer. (p.140) 20 / 30



Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ∼ N(−1+ 0.3x1 + 0.2x3, 0.22)

where also x2 = x1 + u is observed (u ∼ uniform in 0,1). The
variables x1 and x3 are uncorrelated.
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Fig. 3.18 Scatter plot matrix for the variables y, x1, x2, and x3

data well. With polynomial degrees l > 2 onward, a satisfactory fit to the data appears to
be guaranteed. Figure 3.17f additionally displays the mean squared error

MSE.l/ D 1

50

50X

iD1

.yi ! Oyi .l//
2

of the fitted models depending on the order of the polynomial (continuous line). Clearly,
MSE.l/ decreases monotonically with increased l . This suggests that the fit to the data
is better with larger polynomial order. This finding appears to confirm the first strategy
described above, namely to include as many regressors as possible into the model.

In a next step, we investigate how well the fitted models predict new observations
that have been simulated according to the same model. Figure 3.17b shows additionally
simulated observations for every design point xi , i D 1; : : : ; 50. We refer to this data set
as the validation sample, whereas we refer to the first data set (used for estimation) as the
training set. Figure 3.17f shows the mean squared error of Oy!

i for the data y!
i (dashed line)

in the validation set. Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial order l D 3 onward, the
fit is getting worse. We recognize the following: The more complex the model, the better is
the fit to the data that were used for estimation. However, with new data resulting from the
same data generating process, models that are too complex can cause a poorer fit. 4

Example 3.17 Correlated Covariates
Consider the n D 150 observations .yi ; xi1; xi2; xi3/, i D 1; " " " ; 150, in the scatter
plot matrix in Fig. 3.18. The data were generated as follows: The variables x1 and x3 are

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)

22 / 30



142 3 The Classical Linear Model

Table 3.3 Results for the model based on covariates x1, x2, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.970 0.047 !20.46 <0.001 !1.064 !0.877
x1 0.146 0.187 0.78 0.436 !0.224 0.516
x2 0.027 0.177 0.15 0.880 !0.323 0.377
x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x1 and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.967 0.039 !24.91 <0.001 !1.042 !0.889
x1 0.173 0.055 3.17 0.002 0.065 0.281
x3 0.226 0.052 4.33 <0.001 0.123 0.330

independent and uniformly distributed on [0,1]. The variable x2 is defined as x2 D x1 C u,
where u is also uniformly distributed on [0,1]. Thus, the variables x1 and x2 are highly
correlated. Finally, the response variable y is simulated according to the model

y j x1; x2; x3 " N.!1 C 0:3x1 C 0:2x3; 0:22/:

The conditional mean of y is thus dependent on x1 and x3, but not on x2. In the following,
we assume, however, that we do not know the true model (as is typically the case in
practice). At first, we estimate a regression model with all available covariates x1, x2, and
x3, and we obtain the results provided in Table 3.3. Clearly, x1 and x2 are nonsignificant. If
we followed strategy 2, i.e., if we eliminate the nonsignificant variables from the model, we
would eliminate not only the nonrelevant covariate x2, but also the relevant variable x1.
If we instead estimate a correctly specified model with true predictor variables x1 and x3,
we obtain the results shown in Table 3.4. When having a correct model specification, not
only is x3 significant but so is the previously insignificant variable x1. We conclude: If we
first consider all variables and then eliminate the insignificant variables from the model,
it is possible that also important variables will be eliminated. The main reason for such
unfortunate model estimation circumstances is the existing correlation among covariates.4

3.4.1 Effect of Model Specification on Bias, Variance,
and Prediction Quality

We now strengthen the new insights of the previous examples with more theoretical
considerations. In particular, we focus on the following questions:
1. Irrelevant Variables: What can be said about the bias and the variance of the least

squares estimator, in the case that we include irrelevant variables in the model?
2. Missing Variables: What can be said about the bias and the variance of the least

squares estimator, if we omit relevant variables in the model?
3. Prediction Quality: What effect does the model specification, more specifically

the selected variables in the model, have on prediction?

Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.
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Two subsets of covariates (Exam V2014 Problem 4b)

Classical linear model with identically normally distributed random
errors, Cov(ε) = σ2I , but now look at misspecification of E(Y ).
Suppose that the true model is

Y = X 1β1 + X 2β2 + ε,

ε ∼ Nn(0, σ2I ),
(1)

where we have partitioned the design matrix into two parts X 1
(n × p1) and X 2 (n × p2) and β1 and β2 are unknown p1- and
p2-dimensional vectors of regression coefficients (p = p1 + p2).
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Two subsets of covariates (cont.)

Assume that we ignore the covariates in X 2 and fit the model

Y = X 1α1 + δ,

δ ∼ Nn(0, τ2I ).
(2)

Here α1 is used in place of β1 to emphasize that α1 (and estimates
thereof) will in general be different from β1 in the true model.
The least squares estimator for model (2) is
α̂1 = (XT

1 X 1)
−1XT

1 Y .
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Two subsets of covariates (cont.)

Find the expected value and covariance matrix of α̂1 under the true
model.

E(α̂1) = β1 + (XT
1 X 1)

−1XT
1 X 2β2

We see that the bias term for α̂1 is (XT
1 X 1)

−1XT
1 X 2β2. When is

the bias term equal to zero?

Cov(α̂1) = σ2(XT
1 X 1)

−1

Observe, Cov(α̂1) is not dependent on β2.
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Missing covariates: findings

Bias : The estimator for the (true) covariates (in the
model) is only unbiased if the true and missing
covariates are uncorrelated (orthogonal design) in the
data.

Variance : The variance of the estimator for the true covariates
may be smaller based on the model with the missing
covariates (than for the correctly specified model),
and even the sum of the bias2 and the variance may
better for the model with the missing variables. So
the sparse model may be better on overall (even
though it is biased).
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Irrelevant covariates included: findings

Bias : The estimator for the true covariates are unbiased,
also if irrelevant covariates are included.

Variance : The model with the irrelevant covariants have larger
variance for the true covariates, compared with the
model without the irrelevant covariates. So, again
sparse model is the best.
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Irrelevant and/or missing covariates in the regression

Irrelevant : variables that are included in the regression but
should not have been.

missing : variables that are not included, but should have
been.

Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
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Law of parsimony

If two models are not very different – then always choose the
simplest one
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Today

I T-test for significance of one regression coefficient.
I Residuals: standardized (or studentized) preferred.
I Significance of regression based on F-test with SSR/(p-1)

divided by SST/(n-1).
I R2 gives the proportion of variability explained by the

regression model.

R2 =
SSR
SST

= 1− SSE
SST

and will never decrease if new covariates are added to the
model.

I Model selection: want to choose the model that minimize the
expected squared prediction error.
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