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What is the "best" model?

Acid rain in Norwegian lakes, data on n = 26 lakes, with
I y: measured pH in lake,
I x1: SO4: sulfate (the salt of sulfuric acid),
I x2: N03: nitrate (the conjugate base of nitric acid),
I x3: Ca: calsium,
I x4: latent Al : aluminium,
I x5: organic substance,
I x6: area of lake,
I x7: position of lake (Telemark or Trøndelag),
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Topic: choosing the "best" linear regression model!

I First, debunk popular strategies (based on simulations studies
were we knew the "true" model):

I Popular 1: fit all available covariates.
Problem: overfitting (=fitting trends and noise).

I Popular 2: fit all available covariates, then remove the
insignificant ones (=those βj where H0 : βj = 0 is not
rejected).
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Simulated data (Fahrmeir et al: Fig 3.18, Tab3.3, Tab3.4)

True model:
Y ∼ N(−1 + 0.3x1 + 0.2x3, 0.22)

where also x2 = x1 + u is observed (u ∼ uniform in 0,1). The
variables x1 and x3 are uncorrelated.
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3.4 Model Choice and Variable Selection 141
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Fig. 3.18 Scatter plot matrix for the variables y, x1, x2, and x3

data well. With polynomial degrees l > 2 onward, a satisfactory fit to the data appears to
be guaranteed. Figure 3.17f additionally displays the mean squared error

MSE.l/ D 1

50

50X

iD1

.yi ! Oyi .l//
2

of the fitted models depending on the order of the polynomial (continuous line). Clearly,
MSE.l/ decreases monotonically with increased l . This suggests that the fit to the data
is better with larger polynomial order. This finding appears to confirm the first strategy
described above, namely to include as many regressors as possible into the model.

In a next step, we investigate how well the fitted models predict new observations
that have been simulated according to the same model. Figure 3.17b shows additionally
simulated observations for every design point xi , i D 1; : : : ; 50. We refer to this data set
as the validation sample, whereas we refer to the first data set (used for estimation) as the
training set. Figure 3.17f shows the mean squared error of Oy!

i for the data y!
i (dashed line)

in the validation set. Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial order l D 3 onward, the
fit is getting worse. We recognize the following: The more complex the model, the better is
the fit to the data that were used for estimation. However, with new data resulting from the
same data generating process, models that are too complex can cause a poorer fit. 4

Example 3.17 Correlated Covariates
Consider the n D 150 observations .yi ; xi1; xi2; xi3/, i D 1; " " " ; 150, in the scatter
plot matrix in Fig. 3.18. The data were generated as follows: The variables x1 and x3 are

Figure from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.141)
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142 3 The Classical Linear Model

Table 3.3 Results for the model based on covariates x1, x2, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.970 0.047 !20.46 <0.001 !1.064 !0.877
x1 0.146 0.187 0.78 0.436 !0.224 0.516
x2 0.027 0.177 0.15 0.880 !0.323 0.377
x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x1 and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept !0.967 0.039 !24.91 <0.001 !1.042 !0.889
x1 0.173 0.055 3.17 0.002 0.065 0.281
x3 0.226 0.052 4.33 <0.001 0.123 0.330

independent and uniformly distributed on [0,1]. The variable x2 is defined as x2 D x1 C u,
where u is also uniformly distributed on [0,1]. Thus, the variables x1 and x2 are highly
correlated. Finally, the response variable y is simulated according to the model

y j x1; x2; x3 " N.!1 C 0:3x1 C 0:2x3; 0:22/:

The conditional mean of y is thus dependent on x1 and x3, but not on x2. In the following,
we assume, however, that we do not know the true model (as is typically the case in
practice). At first, we estimate a regression model with all available covariates x1, x2, and
x3, and we obtain the results provided in Table 3.3. Clearly, x1 and x2 are nonsignificant. If
we followed strategy 2, i.e., if we eliminate the nonsignificant variables from the model, we
would eliminate not only the nonrelevant covariate x2, but also the relevant variable x1.
If we instead estimate a correctly specified model with true predictor variables x1 and x3,
we obtain the results shown in Table 3.4. When having a correct model specification, not
only is x3 significant but so is the previously insignificant variable x1. We conclude: If we
first consider all variables and then eliminate the insignificant variables from the model,
it is possible that also important variables will be eliminated. The main reason for such
unfortunate model estimation circumstances is the existing correlation among covariates.4

3.4.1 Effect of Model Specification on Bias, Variance,
and Prediction Quality

We now strengthen the new insights of the previous examples with more theoretical
considerations. In particular, we focus on the following questions:
1. Irrelevant Variables: What can be said about the bias and the variance of the least

squares estimator, in the case that we include irrelevant variables in the model?
2. Missing Variables: What can be said about the bias and the variance of the least

squares estimator, if we omit relevant variables in the model?
3. Prediction Quality: What effect does the model specification, more specifically

the selected variables in the model, have on prediction?

Table from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.142)
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Topic: choosing the "best" linear regression model!
I First, debunk popular strategies (based on simulations studies

were we knew the "true" model):
I Popular 1: fit all available covariates.

Problem: overfitting (=fitting trends and noise).
I Popular 2: fit all available covariates, then remove the

insignificant ones (=those βj where H0 : βj = 0 is rejected).
Problem: may also remove important covariates that are
correlated with unimportant ones - but insignificant because
being masked by the unimportant ones.

I Study of irrelevant and missing covariates:
Irrelevant : variables that are included in the regression but

should not have been (IQ of lumberjack)
missing : variables that are not included, but should have

been (omitting height in the tree volum example)
Conclusion in book: the model should not contain irrelevant
covariates, and we should aim for a sparse model.
Take home message is the "Law of parsimony": If two models
are not very different – then always choose the simplest one.
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All models are wrong?

A model is a simplification or approximation of reality and hence
will not reflect all of reality.

George Box noted that "all models are wrong, but some are
useful". While a model can never be "truth"a model might be
ranked from very useful, to useful, to somewhat useful to, finally,
essentially useless.

Burnham, K. P.; Anderson, D. R. (2002), Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach.
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Expected squared prediction error (SPSE)

Possible criterion we want to minimize: SPSE.
Definition (j, M, ... given in classnotes)

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

can be written as:

SPSE =
J∑

j=1

E((Yj − ŶjM)2) = nσ2 + |M|σ2 +
J∑

j=1

(µjM − µj)2

Problem: Not useful on practise since µj and σ2 are unknown.
Plan: Find a way to estimate SPSE and then choose the model M
with the minimum SPSE!
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How to estimate SPSE?

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

Assume we have fitted a model M with |M| regression parameters.
1. Use new (independent) data – if available (seldom the case):

ŜPSE =
J∑

j=1

(Yj − ŶjM)2

2. Cross-validation: mimic new data by dividing data into k folds
(popular is k = n and k = 10). In a for-loop let j = 1, . . . , k ,
and use all folds except fold j to estimate regression parameter,
and use the jth fold to calculated the ŜPSE . Sum across folds.

Choose the model M that minimizes the ŜPSE .
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Cross-validation (5-fold)

Will be taught in TMA4300 Computational statistics and will be a
backbone in TMA4268 Statistical Learning.
http://blog-test.goldenhelix.com/wp-content/uploads/2015/
04/B-fig-1.jpg
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How to estimate SPSE?

SPSE =
J∑

j=1

E((Yj − ŶjM)2)

Assume we have fitted a model M with |M| regression parameters.
3. Use existing data (only): It can be shown that

E(ŜPSE ) = SPSE − 2 | M | σ2 when used on the same data
that was used to make the prediction, so a better estimate for
existing data is

ŜPSE =
n∑

i=1

(Yi − ŶiM)2 + 2|M|σ̂2 = SSE + 2|M|σ̂2

where σ̂2 is the same for all models M, and is often estimated
using the most complex model under study.

4. Other criteria: all have the same form; a first term based on
SSE (or R2) for model M, and a second term penalizing the
model complexity.

Choose the model M that minimizes the ŜPSE . 11 / 47



For models with the same model complexity – easy solution:
SSE

Estimators for SPSE to be used on the same data as to be used for
estimating the model parameters have the same form; a first term
based on SSE (or R2) for model M, and a second term penalizing
the model complexity.
If we consider two models with the same model complexity then
SSE can be used to choose between these models.
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Acid rain (1). Best subset
For 1, . . . , 7 covariates: fit all possible models, and report the
model with the smallest SSE (given below) for each value for the
model complexity. Explain what you see! How many models have
been searched for each model complexity?
regfit.full=regsubsets(y~.,data=ds)
sumreg <- summary(regfit.full)
Subset selection object
Call: regsubsets.formula(y ~ ., data = ds)
Selection Algorithm: exhaustive

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

Names: x1: SO4, x2: N03, x3: Ca, x4: latent Al , x5: organic substance,
x6: area of lake, x7: position of lake (Telemark or Trøndelag).
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Popular model choice criteria

R2 adjusted (corrected)
Mallows’ Cp

Akaike Information Criterion (AIC)
Bayesian Information Criterion (BIC)

NB: there is no overall best choice for criterion - all of these are
used.
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R2 adjusted (corrected)
Ŷi is from fitting the regression model M.
Remember, for a regression model (with intercept) we have the
SST=SSR+SSE.

SST =
n∑

i=1

(Yi − Ȳ )2

SSE =
n∑

i=1

(Yi − Ŷi )
2

R2 = 1− SSE

SST

R2
adj = 1−

SSE
n−p
SST
n−1

= 1− n − 1
n − p

(1− R2)

Choose the model with the largest R2
adj.

"All" statistical software outputs this automatically! However,
Fahrmeir et al (2013) believes that the penalty n − p is too small.
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Happiness (n = 39)

Are love and work the important factors determining happiness?

I y , happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

I x1, money. Annual family income in thousands of dollars.

I x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

I x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

I x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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Happy

> allreg=regsubsets(happy~.,data=happy)
> sumreg <- summary(allreg)
> sumreg
Subset selection object
Call: regsubsets.formula(happy ~ ., data = happy)
1 subsets of each size up to 4
Selection Algorithm: exhaustive

money sex love work
1 ( 1 ) " " " " "*" " "
2 ( 1 ) " " " " "*" "*"
3 ( 1 ) "*" " " "*" "*"
4 ( 1 ) "*" "*" "*" "*"
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money sex love work N p R2 R2
adj

1 0.014 1 0.000747 7.3 4.8
2 −0.130 1 1 0.1 −2.6
3 2.270 1 8.35e-24 61.5 60.5
4 0.990 1 1.36e-13 29.1 27.2
5 0.016 −0.508 2 0.0504 8.8 3.8
6 0.009 2.206 2 8.77e-19 64.5 62.5
7 0.012 0.961 2 3.68e-10 34.6 31.0
8 −0.277 2.279 2 5.55e-18 62.0 59.9
9 0.610 1.079 2 3.48e-09 31.2 27.4
10 1.959 0.511 2 5.75e-20 68.1 66.3
11 0.011 −0.536 2.209 3 9.49e-16 66.2 63.3
12 0.011 0.305 1.009 3 1.84e-07 35.1 29.5
13 0.009 1.902 0.504 3 2.63e-17 70.9 68.4
14 0.108 1.944 0.530 3 2.22e-16 68.1 65.4
15 0.010 −0.149 1.919 0.476 4 9.89e-15 71.0 67.6

Intercept included, N = p − 1, p-value for significance of regression.

R2 = 1− SSE
SST , R2

adj = 1−
SSE
n−p
SST
n−1

. Which model to prefer?
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Mallows’ Cp

Ŷi is from fitting regression model M.
Mallows is the name of a person.

Cp =

∑n
i=1(Yi − Ŷi )

2

σ̂2 − n + 2|M|

Minimizing Cp gives the same optimal model as minimizing ŜPSE .

See Exam V2015 Problem 3 for an in depth explanation of the
theory behind Mallow’s Cp.
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AIC

Akaike information criterion – one of the most widely used.
Designed for likelihood-based inference.

For a normal regression model:

AIC = n ln(σ̂2) + 2(|M|+ 1)

Choose the model with the minimum AIC.
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BIC

Bayesian information criterion.

For a normal regression model:

BIC = n ln(σ̂2) + ln(n)(|M|+ 1)

Choose the model with the minimum BIC.

AIC and BIC are motivated in very different ways, but the final
result for the normal regression model is very similar.

BIC has a larger penalty than AIC (log(n)vs.2), and will often give
a smaller model (=more parsimonious models) than AIC.
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Happy: Mallows’ Cp
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Happy: BIC
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Acid rain (2)

Call: regsubsets.formula(y ~ ., data = ds)
1 subsets of each size up to 7
Selection Algorithm: exhaustive

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
# to mimic test set:
which.max(sumreg$adjr2) #5
which.min(sumreg$cp) #3
which.min(sumreg$bic) #3
# so, model 3 or 5 is suggested for us
# model 3: x1+x2+x3
# model 5: x1+x2+x3+x5+x7
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Acid rain, BIC,
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Practical use of the model criteria

I All subset selection: use smart "leaps and bounds" algorithm,
works fine for number of covariates in the order of 40.

I Forward selection: choose starting model (only intercept), then
add one new variable at each step - selected to make the best
improvement in the model selection criteria. End when no
improvement is made.

I Backward elimination: : choose starting model (full model),
then remove one new variable at each step - selected to make
the best improvement in the model selection criteria. End
when no improvement is made.

I Stepwise selection: combine forward and backward.
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Acid rain (3): stepAIC

> all=lm(happy~.,data=happy)
> stepAIC(all)
Start: AIC=9.08
happy ~ money + sex + love + work

Df Sum of Sq RSS AIC
- sex 1 0.142 38.229 7.221
<none> 38.087 9.076
- money 1 3.782 41.869 10.768
- work 1 6.386 44.473 13.122
- love 1 47.272 85.359 38.549

Step: AIC=7.22
happy ~ money + love + work

Df Sum of Sq RSS AIC
<none> 38.229 7.221
- money 1 3.723 41.952 8.846
- work 1 8.410 46.639 12.976
- love 1 47.742 85.971 36.828

Call:
lm(formula = happy ~ money + love + work, data = happy)

Coefficients:
(Intercept) money love work

-0.185936 0.008959 1.901709 0.503602
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Acid rain (4): Forward

regfitF=regsubsets(y~.,data=ds,method="forward")
sumregF <- summary(regfitF)
Selection Algorithm: forward

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) " " " " "*" "*" " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" "*" "*" "*" "*" " " " "
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
which.max(sumregF$adjr2)#5
which.min(sumregF$cp) #3
which.min(sumregF$bic) #3
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Acid rain (5): Backward

regfitB=regsubsets(y~.,data=ds,method="backward")
sumregB <- summary(regfitB)
Selection Algorithm: backward

x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " "*" " " " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
which.max(sumregB$adjr)#5
# backward finds same as best subset
which.min(sumregB$cp) #3
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Model diagnosis

I Influential observations and outliers: impact of specific
observations on model fit.

I Collinearity analysis: Highly correlated variables cause
imprecise estimation of the regression parameters. (Why?
Look at diagonal elements of Cov(β̂) = σ2(XTX )−1, and
look back to Problem 2 in the start of this lecture.)

I Examination of model assumptions: residual plots!
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Influential observations– and outliers

I Observations that significantly affect inferences drawn from
the data are said to be influential.

I The leverage, hii , associated with the ith datapoint measures
“how far the ith observation is from the other n − 1
observations”.

I Methods for assessing influential observations may be be based
on change in β estimate when observations are deleted.

I Always investigate possible causes of an influential observation
(if possible).

I Cook’s distance can be used to identify influential observations.
I Robust methods (median,quantile regression) can be useful.

Want to understand more? Read for yourself in Fahrmeir et al
(2013): p 160-166.
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Transformations

I Multiplicative or additive model?
I Box–Cox transform with profile likelihood.
I Stabilizing the variance.
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Galapagos islands, Model A, Exam V2014 Problem 2
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Box–Cox plot
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Box–Cox transformation plot based on Model A for the Galapagos data
set, RecEx4. Line at x = 1/3.
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Galapagos islands, Model B, Exam V2014 Problem 2
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Approximation of E and Var
for nonlinear functions

I Have RV X , with mean E(X ) = µ and some variance Var(X ).
I Want to look at a nonlinear function of X , called g(X ).
I Aim: find an approximation to E(g(X )) and Var(g(X )).
I And, the same for two RVs X1 and X2 with g(X1,X2).
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Example ln of BMI

Looking at residual plots from a regression model the conclusion
was to analyse data of BMI on the natural logarithmic scale.
After a regression model was fitted the predicted value for the
ln(BMI) for a specific combination of the covariates was found to
be 3.2151 with an estimated standard deviation of 0.1656.
Use approximate methods to arrive at an estimate of the predicted
value and estimated standard deviation on the original scale,
kg/m2, and not on the logarithmic scale.
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E(g(X ) and Var(g(X ))

I Let g(X ) be a general function. When is
E(g(X )) = g(E(X ))?

I When g(X ) is a linear function of X .
I What can we do if this is not the case?

I We can calculate E(g(X )) =
∫∞
−∞ g(x)f (x)dx when X is

continuous, or a version thereof in the discrete case,
I or if g is monotone we can use the transformations formula to

find the distribution of Y = g(X ) and then calculate E(Y )
and Var(Y ), if possible.

I What if we only know E(X ) = µ and Var(X ) = σ2 and not
f (x)?

I Use a Taylor series approximation of g(X ) around g(µ). g
need to be differentiable.
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Univariate function

First order Taylor approximation of g(X ) around µ.

g(X ) ≈ g(µ) + g ′(µ)(X − µ)

This leads to the following approximations:

E(g(X )) ≈ g(µ)

Var(g(X )) ≈ [g ′(µ)]2Var(X )
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Treatment of tennis elbow
(exam TMA4255 V2012, 3b)

The term tennis elbow is used to describe a state of inflammation
in the elbow, causing pain. This injury is common in people who
play racquet sports, however, any activity that involves repetitive
twisting of the wrist (like using a screwdriver) can lead to this
condition. The condition may also be due to constant computer
keyboard and mouse use.
In a randomized clinical study the aim was to compare three
different methods for treatment of tennis elbow,

I A: physiotherapy intervention,
I B: corticosteroid injections and
I C: wait-and-see (the patients in the wait-and-see group did not

get any treatment but was told to use the elbow as little as
possible).
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Treatment of tennis elbow (cont.)

We will look at the short-term effect of treatment by studying
measurements at 6 weeks. All patients participating in the study
only had one affected arm.
We will look at the outcome measure called pain-free grip force.
This was measured by a digital grip dynamometer and normalized
to the grip force of the unaffected arm. A pain-free grip force of
100 would mean that the affected and the unaffected arm
performed equally good.
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Summary statistics for each of the treatment groups.

Treatment Sample size Average Standard deviation
A (physiotherapy) 63 70.2 25.4
B (injection) 65 83.6 22.9
C (wait-and-see) 60 51.8 23.0
Total 188 69.0
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Example 2: Exam TMA4255 V2012 3d (fraction)

Let µA be the expected pain-free grip force for a population where
the physiotherapy intervention treatment is used to treat tennis
elbow, and µC be the expected pain-free grip force for a population
where the wait-and-see treatment is used. Define the relative
difference between these two expected values as

γ =
µA − µC
µC

.

This can be interpreted as the expected relative gain by using
physiotherapy instead of wait-and-see. Based on two independent
random samples of size nA and nC from the physiotherapy and
wait-and-see treatment groups, respectively, suggest an estimator,
γ̂, for γ.
Use approximate methods to find the expected value and variance
of this estimator, that is, E(γ̂) and Var(γ̂).
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Bivariate function: first order Taylor

X1 is a RV with µ1 = E(X1) and X2 is a RV with µ2 = E(X2).
Let g be a bivariate function of X1 and X2, and define

g ′1(µ1, µ2) =
∂g(x1, x2)

∂x1
|x1=µ1,x2=µ2

g ′2(µ1, µ2) =
∂g(x1, x2)

∂x2
|x1=µ1,x2=µ2

First order Taylor approximation:

g(X1,X2) ≈ g(µ1, µ2) + g ′1(µ1, µ2)(X1−µ1) + g ′2(µ1, µ2)(X2−µ2)
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Bivariate function: first order Taylor

E(g(X1,X2)) ≈ g(µ1, µ2)

Var(g(X1,X2)) ≈ [g ′1(µ1, µ2)]2Var(X1) + [g ′2(µ1, µ2)]2Var(X2)+

2 · g ′1(µ1, µ2) · g ′2(µ1, µ2)Cov(X1,X2)
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Multivariate version

From Tabeller og formler i statistikk.
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Today

I Choosing between models of equal model complexity: choose
the model with the minimum SSE.

I Choosing between models of different model complexity:
Model selection based on penalized criteria (Mallows Cp,
R2

adj,AIC and BIC). Try out on RecEx4 and Compulsory
Exercise 2.

I BoxCox transformation: see RecEx4.
I Work for for yourself: Taylor solution to E and Var of nonlinear

function, useful when you want to look at transformations of
the data or functions of parameter estimates.

Summary of Part 2 in Kahoot!
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