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Today

I Linear hypotheses in regression vs. nested models.
I The universal F-test for linear hypotheses: two formulas.
I The two formulas: one easy to use, one easy for proving

F-distribution.
I Special cases of the universal F-test.
I New problem: categorical covariate with effect coding (for

interpretation)
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Happiness (n = 39)

Are love and work the important factors determining happiness?

I y , happiness. 10-point scale, with 1 representing a suicidal state,
5 representing a feeling of «just muddling along», and 10
representing a euphoric state.

I x1, money. Annual family income in thousands of dollars.

I x2, sex. Sex was measured as the values 0 or 1, with 1 indicating a
satisfactory level of sexual activity.

I x3, love. 3-point scale, with 1 representing loneliness and isolation,
2 representing a set of secure relationships, and 3 representing a
deep feeling of belonging and caring in the context of some family
or community.

I x4, work. 5-point scale, with 1 indicating that an individual is
seeking other employment, 3 indicating the job is OK, and 5
indicating that the job is enjoyable.

Data taken from library faraway, data set happy.
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3.13 Testing Linear Hypotheses

Hypotheses

1. General linear hypothesis:

H0 W C ˇ D d against H0 W C ˇ ¤ d

where C is a r ! p-matrix with rk.C / D r " p (r linear independent
restrictions).

2. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0

3. Composite test of a subvector:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0

4. Test for significance of regression:

H0 W ˇ1 D ˇ2 D # # # D ˇk D 0 against

H1 W ˇj ¤ 0 for at least one j 2 f1; : : : ; kg

Test Statistics

Assuming normal errors we obtain under H0:
1. F D 1=r .C Ǒ $ d/0 ! O!2C .X 0X/!1C 0"!1

.C Ǒ $ d/ % Fr;n!p

2. tj D
Ǒ
j

sej
% tn!p

3. F D 1
r
. Ǒ

1/
0 dCov. Ǒ

1/
!1. Ǒ

1/ % Fr;n!p

4. F D n $ p

k

R2

1 $ R2
% Fk;n!p

Critical Values

Reject H0 in the case of:

1. F > Fr;n!p.1 $ ˛/
2. jt j > tn!p.1 $ ˛=2/

3. F > Fr;n!p.1 $ ˛/
4. F > Fk;n!p.1 $ ˛/

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.135)
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Constrained and unconstrained estimate
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Fig. 3.15 Illustration of the difference in goodness of fit between the unconstrained least squares
estimator and the estimator under the constraint 0 ! ˇ ! 1. The (unconstrained) least squares
estimator is labeled as Ǒ. For the constrained solution, we have Ǒ D 1

space, the residual sum of squares reaches its minimum for Ǒ D 1. In summary, the
difference SSEH0 ! SSE is always greater or equal to zero, since the fit to the data
under the restriction C ˇ D d can be, at best, as good as with the unconstrained
least squares estimator. A formal proof for !SSE " 0 will be given in the appendix
of this chapter on p. 172.

The above illustration also shows the main idea behind the statistic (3.27). The
smaller the difference between SSEH0 and SSE, the closer the two minima are,
shown in Fig. 3.15, and the more likely it is that we will retain the null hypothesis.
On the other hand, the larger the difference, the more likely it is that we will reject
the null hypotheses. The test statistic actually used is

F D
1
r
!SSE
1

n"p
SSE

D n ! p

r

!SSE
SSE

; (3.28)

where r represents the number of (linear independent) restrictions, or the number of
rows in C . The additional constant factor n"p

r
is not important for interpretation. It

ensures that the distribution of the test statistic under the null hypothesis is a known
distribution.

In order to derive the distribution of the test statistic under H0, we proceed as
follows:
1. Determine the least squares estimator under H0

In Sect. 3.5.2 (p. 172), we derive the least squares estimator ǑR under H0, i.e.,
under the restriction C ˇ D d . We obtain

ǑR D Ǒ ! .X 0X/"1C 0.C .X 0X/"1C 0 /"1.C Ǒ ! d/:

2. Determine the difference in residual sum of squares
In Sect. 3.5.2, we derive the difference !SSE in the residual sum of squares,

given by

Figure 3.15 from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.1329)
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3.14 Confidence Regions and Prediction Intervals

Provided that we have (at least approximately) normally distributed errors
or a large sample size, we obtain the following confidence intervals or
regions and prediction intervals:

Confidence Interval for ˇj

A confidence interval for ˇj with level 1 ! ˛ is given by

Œ Ǒ
j ! tn!p.1 ! ˛=2/ " sej ; Ǒ

j C tn!p.1 ! ˛=2/ " sej !:

Confidence Ellipsoid for Subvector ˇ1

A confidence ellipsoid for ˇ1 D .ˇ1; : : : ; ˇr /
0 with level 1 ! ˛ is given by

!
ˇ1 W 1

r
. Ǒ

1 ! ˇ1/
0 dCov. Ǒ

1/
!1. Ǒ

1 ! ˇ1/ # Fr;n!p.1 ! ˛/

"
:

Confidence Interval for "0

A confidence interval for "0 D E.y0/ of a future observation y0 at location
x0 with level 1 ! ˛ is given by

x0
0

Ǒ ˙ tn!p.1 ! ˛=2/ O#.x0
0.X

0X/!1x0/
1=2:

Prediction Interval

A prediction interval for a future observation y0 at location x0 with level
1 ! ˛ is given by

x0
0

Ǒ ˙ tn!p.1 ! ˛=2/ O#.1 C x0
0.X

0X/!1x0/1=2:

x0
0

Ǒ $ N.x0
0ˇ; #2x0

0.X
0X/!1x0/:

Standardizing yields

x0
0

Ǒ ! "0

#.x0
0.X 0X/!1x0/1=2

$ N.0; 1/:

Box from our text book: Fahrmeir et al (2013): Regression.
Springer. (p.137)
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Concrete aggregates data

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists – our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Today

I Linear hypotheses in regression vs. nested models.
I The universal F-test for linear hypotheses: two formulas.
I The two formulas: one easy to use, one easy for proving

F-distribution.
I Special cases of the universal F-test.
I Next time: categorical covariate with effect coding (for

interpretation)

9 / 12


