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Today: Analysis of variance (ANOVA) and analysis of
covariance (ANCOVA)

I Good news: really nothing new, just linear regression where we
have one or more categorical covariates.

I Bad news: a bit technical with respect to coding the
covariates in the design matrix.

I Bad or good news: also tell the story of ANOVA without linear
regression since that is the classical way to do things - so you
will be able to recognize that this is a problem that you can
solve.

I Good news: we are taking one step toward the last topic Part
4: Design of experiments.
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Rothamsted Experimental Station

• founded in 1843 by John Bennet
Lawes on his inherited 16t 
century estate, Rothamsted
Manor, 
– wanted to investigate the impact 

of inorganic and organic 
fertilizers on crop yield 

– had founded a fertilizer 
manufacturing company in 1842

• Lawes appointed the chemist 
Joseph Henry Gilbert to the 
directorship of the chemical 
laboratory 

• the two began a series of field 
experiments to examine the 
effects of inorganic fertilizers and 
organic manures on the nutrition 
and yield of a number of 
important crops 

http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf

2 / 47



The Broadbalk Field Trial at Rothamsted

• this was the first field trial 
started by Lawes and Gilbert 

• began in 1843 
• purpose was to investigate the 

relative importance of different 
plant nutrients (N, P, K, Na, 
Mg) on grain yield of winter 
wheat

• weeds were controlled by hand 
hoeing and fallowing 
– now some herbicides are used

• The experiment continues to 
this day

http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf
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Concrete aggregates example

I Aggregates are inert granular materials
such as sand, gravel, or crushed stone
that, along with water and portland
cement, are an essential ingredient in
concrete.

I For a good concrete mix, aggregates need to be clean, hard,
strong particles free of absorbed chemicals or coatings of clay
and other fine materials that could cause the deterioration of
concrete.

I We could like to examine 5 different aggregates, and measure
the absorption of moisture after 48hrs exposure (to moisture).

I A total of 6 samples are tested for each aggregate.
I Research question: Is there a difference between the

aggregates with respect to absorption of moisture?

4 / 47



Concrete aggregates data

Table 13.1 of Walepole, Myers, Myers, Ye: Statistics for Engineers and Scientists – our textbook from
the introductory TMA4240/TMA4245 Statistics course.
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Concrete aggregates example
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One-way Analysis of Variance (ANOVA)

Model

Yij = µi + εij for i = 1, 2, ..., p and j = 1, 2, ..., ni

alternative parameterization

Yij = µ+ αi + εij

The sample sizes for each group, ni may vary. εij ∼ N(0, σ2). Let
n =

∑p
i=1 ni be the total number of observations.

Aim: look at parameter estimates and test if there is any difference
between the groups.
How can that be done using our linear regression model?
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Concrete aggregates data

# means for each recipe
> means=

aggregate(ds,by=list(ds$aggregate),FUN=mean)$moisture
> grandmean=mean(ds$moisture)
> grandmean
[1] 561.8
> alphas=means-grandmean
> alphas
[1] -8.466667 7.533333 48.700000 -96.633333 48.866667
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Concrete aggregates data

# the same with regression
> options(contrasts=c("contr.sum","contr.sum"))
> obj <-lm(moisture~as.factor(aggregate),data=ds)
> summary(obj)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 561.800 12.859 43.688 < 2e-16 ***
as.factor(aggregate)1 -8.467 25.719 -0.329 0.744743
as.factor(aggregate)2 7.533 25.719 0.293 0.772005
as.factor(aggregate)3 48.700 25.719 1.894 0.069910 .
as.factor(aggregate)4 -96.633 25.719 -3.757 0.000921 ***
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Concrete aggregates data

#comparing means and regression estimates
>cbind(c(grandmean,alphas),

c(obj$coefficients,-sum(obj$coefficients[2:5])))
[,1] [,2]

(Intercept) 561.800000 561.800000
as.factor(aggregate)1 -8.466667 -8.466667
as.factor(aggregate)2 7.533333 7.533333
as.factor(aggregate)3 48.700000 48.700000
as.factor(aggregate)4 -96.633333 -96.633333

48.866667 48.866667

Run R code from course lectures tab for model matrix.
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Concrete aggregates data (1)

# checking manually with linear hypotheses
r=4
C=cbind(rep(0,r),diag(r))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(obj$coefficients,ncol=1)
sigma2hat=summary(obj)$sigma^2
Fobs=(t(C%*%betahat-d)%*%
solve(C%*%solve(t(X)%*%X)%*%t(C))%*%
(C%*%betahat-d))/(r*sigma2hat)
> Fobs

[,1]
[1,] 4.301536
> 1-pf(Fobs,r,n-r-1)

[,1]
[1,] 0.008751641
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Concrete aggregates data (2)

> fitA=obj
> fitB=lm(moisture~1,data=aggregates)
> anova(fitA,fitB)
Analysis of Variance Table

Model 1: moisture ~ as.factor(aggregate)
Model 2: moisture ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 124020
2 29 209377 -4 -85356 4.3015 0.008752 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

12 / 47



Concrete aggregates data (3)

# performing ANOVA using method anova -
> anova(obj)
Analysis of Variance Table

Response: moisture
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(aggregate) 4 85356 21339.1 4.3015 0.008752 **
Residuals 25 124020 4960.8
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One factor: unequal sample sizes

Classical formulation with ANOVA decomposition

Yij − Y.. = (Yij − Yi .) + (Yi . − Y..)
p∑

i=1

ni∑
j=1

(Yij − Y..)
2 =

p∑
i=1

ni∑
j=1

(Yij − Yi .)
2 +

p∑
i=1

ni∑
j=1

(Yi . − Y..)
2

p∑
i=1

ni∑
j=1

(Yij − Y..)
2 =

p∑
i=1

ni∑
j=1

(Yij − Yi .)
2 +

p∑
i=1

ni (Yi . − Y..)
2

SST = SSE+ SSA
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One factor: unequal sample sizes

ANOVA decomposition: what happened to the cross-term?

2
p∑

i=1

ni∑
j=1

(Yij − Yi .)(Yi . − Y..) = 2
p∑

i=1

(Yi . − Y..)

ni∑
j=1

(Yij − Yi .) = 0

ni∑
j=1

(Yij − Yi .) =

ni∑
j=1

Yij −
ni∑
j=1

Yi . = niYi . − niYi . = 0
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One factor: unequal sample sizes

H0 : µ1 = µ2 = · · · = µp = 0 vs. H1 : At least one pair of µi different

is then tested based on

F =

SSA
p−1
SSE
n−p

Where H0 is rejected if fobs > fα, (p − 1), (n − p).
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Machine example

I Response: time (s) spent to assemble a product.
I Factor: this is done by four different machines;

M1,M2,M3,M4.
I Question: Do the machines perform at the same mean rate of

speed?

Data from Walepole, Myers, Myers, Ye: "Statistics for Engineers
and Scientists", Example 13.6= our TMA4245/40 textbook.
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One factor ANOVA
> options(contrasts=c("contr.sum","contr.sum"))
> fit <- lm(time~as.factor(machine),data=dsmat)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.1208 0.3706 113.647 <2e-16 ***
as.factor(machine)1 -0.8208 0.6419 -1.279 0.216
as.factor(machine)2 -0.7375 0.6419 -1.149 0.264
as.factor(machine)3 0.4458 0.6419 0.695 0.495

Residual standard error: 1.816 on 20 degrees of freedom
Multiple R-squared: 0.1945,Adjusted R-squared: 0.07372
F-statistic: 1.61 on 3 and 20 DF, p-value: 0.2186

> anova(fit)
Response: time

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(machine) 3 15.925 5.3082 1.6101 0.2186
Residuals 20 65.935 3.2968
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Residuals
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Machine example: operators

I The 6 repeated measurements for each machine was in fact
made by 6 different operators.

I The operation of the machines requires physical dexterity and
differences among the operators in the speed with which they
operate the machines is anticipated.

I All of the 6 operators have operated all the 4 machines, and
the machines were assigned in random order to the operators=
randomized complete block design.

I By including a blocking factor called Operator, we will reduce
the variation in the experiment that is du to random error.
Thus, we reduce variation due to anticipated factors.

I By randomizing the order the machines were assigned to the
operators we aim to reduce the variation due to unanticipated
factors.
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Model and Sums of squares

Model

Yij = µ+ αi + γj + εij for i = 1, 2, ..., r and j = 1, 2, ..., s

Sums of Squares Identity

Yij = Y.. + (Yi. − Y..) + (Y.j − Y..) + (Yij − Yi. − Y.j + Y..)
r∑

i=1

s∑
j=1

(Yij − Y..)
2 = s

r∑
i=1

(Yi. − Y..)
2 + r

s∑
j=1

(Y.j − Y..)
2

+
r∑

i=1

s∑
j=1

(Yij − Yi. − Y.j + Y..)
2

SST = SSA+ SSB+ SSE
r · s − 1 = (r − 1) + (s − 1) + (r − 1)(s − 1)
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Effect of factor A:

H0 : α1 = α2 = · · · = αr = 0 vs. H1 : At least one αi different from 0

is then tested based on

F1 =
SSA
r−1
SSE

(r−1)(s−1)

Where H0 is rejected if f1 > fα, (r − 1), (r − 1)(s − 1).
Block effect present?

H0 : γ1 = γ2 = · · · = γs = 0 vs. H1 : At least one γj different from 0

is then tested based on

F2 =
SSB
s−1
SSE

(r−1)(s−1)

Where H0 is rejected if f2 > fα, (s − 1), (r − 1)(s − 1).
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RCBD ANOVA

> fit2 <- lm(time~as.factor(machine)+as.factor(operator),
data=dsmat)

> anova(fit2)
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(machine) 3 15.925 5.3082 3.3388 0.047904 *
as.factor(operator) 5 42.087 8.4174 5.2944 0.005328 **
Residuals 15 23.848 1.5899
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Effect of operator with linear hypotheses

fit2 <- lm(time~as.factor(machine)+as.factor(operator),
data=dsmat)
r=5
C=cbind(rep(0,5),rep(0,5),rep(0,5),rep(0,5),diag(5))
d=matrix(rep(0,r),ncol=1)
betahat=matrix(fit2$coefficients,ncol=1)
X=model.matrix(fit2)
sigma2hat=summary(fit2)$sigma^2
Fobs=(t(C%*%betahat-d)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))
%*%(C%*%betahat-d))/(r*sigma2hat)
> Fobs

[,1]
[1,] 5.294435
> 1-pf(Fobs,r,n-dim(C)[2])

[,1]
[1,] 0.005327541
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Residuals
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A second look at the RCBD: additive effects

Previously, randomized complete block design (RCBD) with the
machine example:

Yij = µ+ αi + γj + εij

where
∑r

i=1 αi = 0 and
∑s

j=0 γj = 0.
This is called additive effects of treatment and blocks.

I This means that if we compare two operators there is a
constant difference in time to assemble the product,

I or, if we compare machines, these are ranked in the same order
of (wrt time) for each operator.
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Estimates

µ̂ = 42.1208
α̂1 = −0.8208
α̂2 = −0.7375
α̂3 = 0.4458
α̂4 = 1.1125
γ̂1 = −1.1708
γ̂2 = −1.5958
γ̂3 = −0.8958
γ̂4 = 0.3292
γ̂5 = 1.9292
γ̂6 = 1.404167
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Interaction effect?

But, it could be interactions present. What if one of the operators
really could not manage one of the machines?
Model with interaction between treatment and block:

Yij = µ+ αi + γj + (αγ)ij + εij

where
∑r

i=1(αγ)ij =
∑s

j=1(αγ)ij = 0 (for all i and j) in addition to∑r
i=1 αi = 0 and

∑s
j=1 γj = 0.

But, since we only have one observation for each combination of i
and j , we can not separate (αγ)ij and εij .
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Interaction effect?

SSE =
r∑

i=1

s∑
j=1

(Yij − Y·i − Yj · + Y··)
2

E (
SSE

(r − 1)(s − 1)
) = σ2 +

∑r
i=1

∑s
j=1(αγ)

2
ij

(s − 1)(r − 1)

A large value of SSE will either mean that we have an interaction
term present, or that σ2 is large. We can not assess interaction in a
RCBD. We need more than one observation for each observation to
distinguish between (αγ)ij and εij .
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Age and memory

I Why do older people often seem not to remember things as
well as younger people? Do they not pay attention? Do they
just not process the material as thoroughly?

I One theory regarding memory is that verbal material is
remembered as a function of the degree to which is was
processed when it was initially presented.

I Eysenck (1974) randomly assigned 50 younger subjects and 50
older (between 55 and 65 years old) to one of five learning
groups.

I After the subjects had gone through a list of 27 items three
times they were asked to write down all the words they could
remember.

Eysenck study of recall of older and younger subjects under conditions of
differential processing, Eysenck (1974) and presented in Howell (1999).
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The Age and Memory data set

I Number of words recalled: After the subjects had gone
through the list of 27 items three times they were asked to
write down all the words they could remember.

I Age: Younger (18-30) and Older (55-65).
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The Age and Memory data set: Process

I The Counting group was asked to read through a list of words
and count the number of letters in each word. This involved
the lowest level of processing.

I The Rhyming group was asked to read each word and think of
a word that rhymed with it.

I The Adjective group was asked to give an adjective that could
reasonably be used to modify each word in the list.

I The Imagery group was instructed to form vivid images of
each word, and this was assumed to require the deepest level
of processing.
None of these four groups was told they would later be asked
to recall the items.

I Finally, the Intentional group was asked to memorize the words
for later recall.

Data taken from: http://www.statsci.org/data/general/eysenck.html
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●

●

OA YA OC YC OIm YIm OIn YIn OR YR

5
10

15
20

Y=younger (blue), O=older (red), A=adjective, C=counting,
Im=Imagery, In=intentional, R=rythming.
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> summary(res)
Call:
lm(formula = Words ~ Age * Process)

Residuals:
Min 1Q Median 3Q Max

-7.0 -1.6 -0.5 2.0 9.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6100 0.2833 40.982 < 2e-16 ***
Age1 -1.5500 0.2833 -5.471 3.98e-07 ***
Process1 1.2900 0.5666 2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 ***
Process3 3.8900 0.5666 6.866 8.24e-10 ***
Process4 4.0400 0.5666 7.130 2.43e-10 ***
Age1:Process1 -0.3500 0.5666 -0.618 0.538312
Age1:Process2 1.8000 0.5666 3.177 0.002040 **
Age1:Process3 -0.5500 0.5666 -0.971 0.334288
Age1:Process4 -2.1000 0.5666 -3.706 0.000363 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Eysenck model matrix

> X=model.matrix(res)
> X[c(1,11,21,31,41,51,61,71,81,91),]

(Intercept) Age1 Process1 Process2 Process3 Process4 Age1:Process1
1 1 -1 0 1 0 0 0
11 1 -1 -1 -1 -1 -1 1
21 1 -1 1 0 0 0 -1
31 1 -1 0 0 1 0 0
41 1 -1 0 0 0 1 0
51 1 1 0 1 0 0 0
61 1 1 -1 -1 -1 -1 -1
71 1 1 1 0 0 0 1
81 1 1 0 0 1 0 0
91 1 1 0 0 0 1 0

Age1:Process2 Age1:Process3 Age1:Process4
1 -1 0 0
11 1 1 1
21 0 0 0
31 0 -1 0
41 0 0 -1
51 1 0 0
61 -1 -1 -1
71 0 0 0
81 0 1 0
91 0 0 1
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Model and Sums of Squares

Model:

Yijk = µ+ αi + γj + (αγ)ij + εijk

for i = 1, 2, ..., r and j = 1, 2, ..., s and k = 1, ...,m

εijk ∼ N(0, σ2)
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Two-way ANOVA questions

There are three main questions that we might ask in two-way
ANOVA:

I Does the response variable depend on Factor A?
I Does the response variable depend on Factor B?
I Does the response variable depend on Factor A differently for

different values of Factor B, and vice versa?
All of these questions can be answered using hypothesis tests, first
we test the interaction.
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Effect of interaction AB

HA
0 :(αγ)11 = (αγ)12 = · · · = (αγ)rs = 0 vs.
H1 : At least one (αγ)ij different from 0

is then tested based on

F3 =

SS(AB)
(r−1)(s−1)

SSE
rs(m−1)

Where H0 is rejected if f3 > fα, (r − 1)(s − 1), rs(m − 1).
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What do we do after testing for interaction?

I If the interaction is significant (we reject HAB
0 ).

I Then it is not recommended to test for main effects (that is,
the marginal contributions of the two factors A and B
separately). This is since the interpretation of the marginal
“main effect” is unclear in the presence of interaction. How can
we “separate out” the effect of A from the interaction?

I Instead, it is usually preferable to examine contrasts in the
treatment combinations.

I If the interaction is not found to be significant (do not reject
HAB

0 ).
I We are then interested in the main effects. These can now be

tested within the complete model.
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Effect of factor A:

HA
0 : α1 = α2 = · · · = αr = 0 vs. H1 : At least one αi different from 0

is then tested based on

F1 =
SSA
r−1
SSE

rs(m−1)

Where HA
0 is rejected if f1 > fα, (r − 1), rs(m − 1).

Effect of factor B:

HB
0 : γ1 = γ2 = · · · = γs = 0 vs. H1 : At least one γi different from 0

is then tested based on

F2 =
SSB
s−1
SSE

rs(m−1)

Where HB
0 is rejected if f2 > fα, (s − 1), sn(m − 1).
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> summary(res)
Call:
lm(formula = Words ~ Age * Process)

Residuals:
Min 1Q Median 3Q Max

-7.0 -1.6 -0.5 2.0 9.6

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6100 0.2833 40.982 < 2e-16 ***
Age1 -1.5500 0.2833 -5.471 3.98e-07 ***
Process1 1.2900 0.5666 2.277 0.025170 *
Process2 -4.8600 0.5666 -8.578 2.60e-13 ***
Process3 3.8900 0.5666 6.866 8.24e-10 ***
Process4 4.0400 0.5666 7.130 2.43e-10 ***
Age1:Process1 -0.3500 0.5666 -0.618 0.538312
Age1:Process2 1.8000 0.5666 3.177 0.002040 **
Age1:Process3 -0.5500 0.5666 -0.971 0.334288
Age1:Process4 -2.1000 0.5666 -3.706 0.000363 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.833 on 90 degrees of freedom
Multiple R-squared: 0.7293,Adjusted R-squared: 0.7022
F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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Eysenck ANOVA

> res <- lm(Words~Age*Process)
> anova(res)
Analysis of Variance Table

Response: Words
Df Sum Sq Mean Sq F value Pr(>F)

Age 1 240.25 240.25 29.9356 3.981e-07 ***
Process 4 1514.94 378.74 47.1911 < 2.2e-16 ***
Age:Process 4 190.30 47.58 5.9279 0.0002793 ***
Residuals 90 722.30 8.03
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Next: maybe want to compare different combinations of age and
process? Then, easiest to just combine the two factors into a new joint
factor and skip the intercept.
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Summing up

Topic today: the one-way and two-way ANOVA models.
I Classical formulation has focus on comparing sums of squares.
I We don’t have to prove the classical results because we

instead fit the ANOVA model using linear regression with
effect coding of covariates.

I It is important to plot results and to understand when an
interaction term is needed.

I To test ANOVA hypotheses we use linear hypotheses in the
regression – where we automatically have theoretical results for
F-distributions.

I We will meet linear regression models with k factors with two
levels each in Part 4: Design of Experiments (DOE).
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