TMA4267 Linear Statistical Models V2017 (L17) Part 4: Design of Experiments

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 21, 2017

Today:

- Observational studies vs. designed experiments.
- Still linear regression, but now with k factors each with only 2 levels.
- Effect coding, orthogonal columns in design matrix.
- 2^k full factorial design.
- Simplified formulas for $\hat{\beta}$, $Cov(\hat{\beta})$ and SSE.
- If time: from parameter estimated to main and interaction effects.

Part 4 is based on Tyssedal: Design of experiments note.

Design of experiments vs. observational studies

In this part of the course we are working with the linear regression model:

$$m{Y} = m{X}m{eta} + m{arepsilon}$$
 with $m{arepsilon} \sim N(m{0}, \sigma^2m{I})$

and use results from Part 2 of the course.

Earlier in the course: both the design matrix X and the reponses Y were observed together in a randomly selected sample from a population.

- Munich rent index: rent prices vs. area, location, condition of bathroom, condition of kitchen,
- Lakes: pH level vs. content of SO₄, NO₃, latent Al, Ca, organic, position, area.
- ► Happiness: Happiness vs. love, money, sex and work.

Now: we choose (design) the experiment by specifying the design matrix \boldsymbol{X} to be used to produce a sample, and then collecting reponses \boldsymbol{Y} for this design matrix.

The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.

- The outcome of the process is measured as chemical yield (in grams).
- ► Two quantitative variables (factors) were investigated:
 - Factor A: Temperature (in degrees C).
 - Factor B: Concentration (in percentage).

Experiment no.	Temperature	Concentration	Yield
1	160	20	60
2	180	20	72
3	160	40	54
4	180	40	68
	<i>x</i> ₁	<i>x</i> ₂	у

Regression with pilot plant data V1- original

- > x1=c(160,180,160,180)
 > x2=c(20,20,40,40)
 > y=c(60,72,54,68)
- > fitx=lm(y^x1*x2)
 Coefficients:
 (Intercept) x1
 -14.000 0.500

0

 Regression with pilot plant data V1- recoded

> # recode to -1 and 1 > $z_1=(x_1-(max(x_1)+min(x_1))/2)/((max(x_1)-min(x_1))/2)$ > $z_2=(x_2-(max(x_2)+min(x_2))/2)/((max(x_2)-min(x_2))/2)$ > fitz=lm(y^2z1*z2) Coefficients: (Intercept) z1 72 z1:z2 63.5 6.5 -2.50.5 > model.matrix(fitz) (Intercept) z1 z2 z1:z2 1 -1 -1 1 1 2 1 1 -1 -1 З 1 -1 1 -1 1 1 1 1 4

Regression with original and coded factors

Original: x_1 and x_2 , gave estimated regression equation

$$\hat{y} = -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2$$

Coded: $z_1 = (x_1 - 170)/10$ and $z_2 = (x_2 - 30)/10$, gave estimated regression equation

$$\hat{y} = 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2$$

Can you compare these two results?

Regression with original and coded factors

Substitute $z_1 = (x_1 - 170)/10$ and $z_2 = (x_2 - 30)/10$ into the equation to get a estimated regression equation based on x_1 and x_2 .

$$\begin{aligned} \hat{y} &= 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2 \\ &= 63.5 + 6.5\frac{x_1 - 170}{10} - 2.5\frac{x_2 - 30}{10} + 0.5\frac{x_1 - 170}{10} \cdot \frac{x_2 - 30}{10} \\ &= 63.5 - 6.5\frac{170}{10} + 2.5\frac{30}{10} + 0.5\frac{170 \cdot 30}{10 \cdot 10} \\ &+ x_1(6.5\frac{1}{10} - 0.5\frac{1}{10}\frac{30}{10}) + x_2(-2.5\frac{1}{10} - 0.5\frac{1}{10}\frac{170}{10}) \\ &+ 0.5\frac{1}{10}\frac{1}{10}x_1 \cdot x_2 \\ &= -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2 \end{aligned}$$

Design of experiments (DOE) terminology

- ▶ Variables are called factors, and denoted A, B, C, ...
- We will only look at factors with two levels:
 - high, coded as +1 or just +, and,
 - ▶ low, coded as −1 or just −.
- In the pilot plant example we had two factors with two levels, thus 2 · 2 = 4 possible combinations. In general k factors with two levels gives 2^k possible combinations.

Experiment no.	Α	В	AB	Level code	Response
1	-1	-1	1	1	У1
2	1	-1	-1	а	У2
3	-1	1	-1	Ь	У3
4	1	1	1	ab	<i>Y</i> 4
	z_1	<i>z</i> ₂	<i>z</i> ₁₂		у
		Experiment no. A	Experiment no. A B 1 -1 -1 2 1 -1 3 -1 1 4 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Experiment no. A B AB Level code1-1-11121-1-1 a 3-11-1 b 4111 ab

Standard notation for 2^2 experiment:

Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters, page 321.

- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of lima bean (baby or large)
- Y: yield

A	В	С	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	6
+	-	-	-	-	+	+	а	4
-	+	-	-	+	-	+	Ь	10
+	+	-	+	-	-	-	ab	7
-	-	+	+	-	-	+	с	4
+	-	+	-	+	-	-	ac	3
-	+	+	-	-	+	-	bc	8
+	+	+	+	+	+	+	abc	5
×1	×2	×3	×12	×13	×23	×123		y

Main effects in DOE

Main effect of A

$$\widehat{A} = 2\widehat{\beta}_1 \\ = \frac{y_2 + y_4 + y_6 + y_8}{4} - \frac{y_1 + y_3 + y_5 + y_7}{4}$$

Interpretation: mean response when A is high MINUS mean response when A is low. Similarly, main effect of B

$$\widehat{B} = 2\widehat{\beta}_2 = \frac{y_3 + y_4 + y_7 + y_8}{4} - \frac{y_1 + y_2 + y_5 + y_6}{4}$$

Interpretation: mean response when B is high MINUS mean response when B is low.

Explain the main effects in plain words!

A: depth (0.5 or 1), B: watering daily (once, twice), C: type (baby, large).

Interaction effect in DOE

- What is the terpretation in DOE associated with β_{12} ?
- ► In DOE $2\hat{\beta}_{12}$ is denoted \widehat{AB} and is called the *estimated interaction effect between A and B*.

$$\widehat{AB} = 2\widehat{\beta}_{12}$$

$$= \frac{\text{estimated main effect of } A \text{ when } B \text{ is high}}{2}$$

$$- \frac{\text{estimated main effect of } A \text{ when } B \text{ is low}}{2}$$

$$= \frac{\text{estimated main effect of } B \text{ when } A \text{ is high}}{2}$$

$$- \frac{\text{estimated main effect of } B \text{ when } A \text{ is low}}{2}$$

Interaction plot matrix for y

A B C A:B A:C B:C A:B:C -2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25

- $\widehat{ABC} = \frac{1}{2}\widehat{AB}$ interaction when C is at the high level $\frac{1}{2}\widehat{AB}$ interaction when C is at the low level.
- Or, two other possible interpretation with swapped placed for A, B and C.
- And remember that $\widehat{AB} = \frac{1}{2}\widehat{A}$ main effect when *B* is at the high level $\frac{1}{2}\widehat{A}$ main effect when *B* is at the low level.

Geometric interpretation of effects

2^k full factorial

- ▶ There are k factors: A, B, C, ..., and
- 2=each factor has two levels.
- There are 2^k possible experiments.
- We have in total 2^k parameters to be estimated:
 - 1 intercept
 - $k = \binom{k}{1}$ main effects: A, B, C, ...
 - $\binom{k}{2}$ two factor interactions: AB, AC, ..., BC, BD,...
 - $\binom{k}{3}$ three factor interactions: ABC, ABD, ABE, ...
 - ...

•
$$\binom{k}{k} = 1 \ k$$
 factor interaction.

$$Y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \dots + \beta_{k}x_{ki} + \beta_{12}x_{12} + \dots + \beta_{k-1,k}x_{k-1,k} + \beta_{123}x_{123} + \dots + \beta_{k-2,k-1,k}x_{k-2,k-1,k} \dots + \beta_{12...k}x_{12...k}$$