TMA4267 Linear Statistical Models V2017 (L17) Part 4: Design of Experiments

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 21, 2017

Today:

- Observational studies vs. designed experiments.
- Still linear regression, but now with k factors each with only 2 levels.
- Effect coding, orthogonal columns in design matrix.
- 2^{k} full factorial design.
- Simplified formulas for $\hat{\boldsymbol{\beta}}, \operatorname{Cov}(\hat{\boldsymbol{\beta}})$ and SSE.
- If time: from parameter estimated to main and interaction effects.

Part 4 is based on Tyssedal: Design of experiments note.

Design of experiments vs. observational studies

In this part of the course we are working with the linear regression model:

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \text { with } \varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

and use results from Part 2 of the course.
Earlier in the course: both the design matrix \boldsymbol{X} and the reponses Y were observed together in a randomly selected sample from a population.

- Munich rent index: rent prices vs. area, location, condition of bathroom, condition of kitchen,
- Lakes: pH level vs. content of $\mathrm{SO}_{4}, \mathrm{NO}_{3}$, latent Al, Ca, organic, position, area.
- Happiness: Happiness vs. love, money, sex and work.

Now: we choose (design) the experiment by specifying the design matrix \boldsymbol{X} to be used to produce a sample, and then collecting reponses Y for this design matrix.

The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.

- The outcome of the process is measured as chemical yield (in grams).
- Two quantitative variables (factors) were investigated:
- Factor A: Temperature (in degrees C).
- Factor B: Concentration (in percentage).

Experiment no.	Temperature	Concentration	Yield
1	160	20	60
2	180	20	72
3	160	40	54
4	180	40	68
	x_{1}	x_{2}	y

Regression with pilot plant data V1- original

```
> x1=c(160,180,160,180)
> x2=c(20,20,40,40)
> y=c(60,72,54,68)
```

> fitx=lm(y~x1*x2)
Coefficients:

(Intercept)	x 1	x 2	$\mathrm{x} 1: \mathrm{x} 2$
-14.000	0.500	-1.100	0.005

> model.matrix(fitx)
(Intercept) $x 1 \times 2 \mathrm{x} 1: \mathrm{x} 2$
$1 \quad 1160203200$
21180203600
31160406400
41180407200

Regression with pilot plant data V1- recoded

$>$ \# recode to -1 and 1
$>z 1=(x 1-(\max (x 1)+\min (x 1)) / 2) /((\max (x 1)-\min (x 1)) / 2)$
$>z 2=(x 2-(\max (x 2)+\min (x 2)) / 2) /((\max (x 2)-\min (x 2)) / 2)$
$>$ fitz=lm($\mathrm{y}^{\sim} \mathrm{z} 1 * z 2$)
Coefficients:

(Intercept)	z1	z2	z1:z2
63.5	6.5	-2.5	0.5

$>$ model.matrix(fitz)

	(Intercept)	z 1	z 2	$\mathrm{z} 1: \mathrm{z} 2$
1	1	-1	-1	1
2	1	1	-1	-1
3	1	-1	1	-1
4	1	1	1	1

Regression with original and coded factors

Original: x_{1} and x_{2}, gave estimated regression equation

$$
\hat{y}=-14+0.5 x_{1}-1.1 x_{2}+0.005 x_{1} \cdot x_{2}
$$

Coded: $z_{1}=\left(x_{1}-170\right) / 10$ and $z_{2}=\left(x_{2}-30\right) / 10$, gave estimated regression equation

$$
\hat{y}=63.5+6.5 z_{1}-2.5 z_{2}+0.5 z_{1} \cdot z_{2}
$$

Can you compare these two results?

Regression with original and coded factors

Substitute $z_{1}=\left(x_{1}-170\right) / 10$ and $z_{2}=\left(x_{2}-30\right) / 10$ into the equation to get a estimated regression equation based on x_{1} and x_{2}.

$$
\begin{aligned}
\hat{y} & =63.5+6.5 z_{1}-2.5 z_{2}+0.5 z_{1} \cdot z_{2} \\
& =63.5+6.5 \frac{x_{1}-170}{10}-2.5 \frac{x_{2}-30}{10}+0.5 \frac{x_{1}-170}{10} \cdot \frac{x_{2}-30}{10} \\
& =63.5-6.5 \frac{170}{10}+2.5 \frac{30}{10}+0.5 \frac{170 \cdot 30}{10 \cdot 10} \\
& +x_{1}\left(6.5 \frac{1}{10}-0.5 \frac{1}{10} \frac{30}{10}\right)+x_{2}\left(-2.5 \frac{1}{10}-0.5 \frac{1}{10} \frac{170}{10}\right) \\
& +0.5 \frac{1}{10} \frac{1}{10} x_{1} \cdot x_{2} \\
& =-14+0.5 x_{1}-1.1 x_{2}+0.005 x_{1} \cdot x_{2}
\end{aligned}
$$

Design of experiments (DOE) terminology

- Variables are called factors, and denoted A, B, C, \ldots
- We will only look at factors with two levels:
- high, coded as +1 or just +, and,
- low, coded as -1 or just - .
- In the pilot plant example we had two factors with two levels, thus $2 \cdot 2=4$ possible combinations. In general k factors with two levels gives 2^{k} possible combinations.

Standard notation for 2^{2} experiment:

Experiment no.	A	B	$A B$	Level code	Response
1	-1	-1	1	1	y_{1}
2	1	-1	-1	a	y_{2}
3	-1	1	-1	b	y_{3}
4	1	1	1	$a b$	y_{4}
	z_{1}	z_{2}	z_{12}		y

Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters, page 321.

- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of lima bean (baby or large)
- Y : yield

A	B	C	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	6
+	-	-	-	-	+	+	a	4
-	+	-	-	+	-	+	b	10
+	+	-	+	-	-	-	ab	7
-	-	+	+	-	-	+	c	4
+	-	+	-	+	-	-	ac	3
-	+	+	-	-	+	-	bc	8
+	+	+	+	+	+	+	abc	5
x_{1}	x_{2}	x_{3}	x_{12}	x_{13}	$x_{\mathbf{2 3}}$	x_{123}		y

Main effects in DOE

Main effect of A

$$
\begin{aligned}
\hat{A} & =2 \hat{\beta}_{1} \\
& =\frac{y_{2}+y_{4}+y_{6}+y_{8}}{4}-\frac{y_{1}+y_{3}+y_{5}+y_{7}}{4}
\end{aligned}
$$

Interpretation: mean response when A is high MINUS mean response when A is low.
Similarily, main effect of B

$$
\begin{aligned}
\widehat{B} & =2 \hat{\beta}_{2} \\
& =\frac{y_{3}+y_{4}+y_{7}+y_{8}}{4}-\frac{y_{1}+y_{2}+y_{5}+y_{6}}{4}
\end{aligned}
$$

Interpretation: mean response when B is high MINUS mean response when B is low.

A	B	C	A:B	A:C	B:C	A:B:C
-2.25	3.25	-1.75	-0.75	0.25	-0.25	-0.25

Explain the main effects in plain words!
A: depth (0.5 or 1), B: watering daily (once, twice), C: type (baby, large).

Interaction effect in DOE

- What is the terpretation in DOE associated with β_{12} ?
- In DOE $2 \hat{\beta}_{12}$ is denoted $\widehat{A B}$ and is called the estimated interaction effect between A and B.

$$
\begin{aligned}
\widehat{A B} & =2 \hat{\beta}_{12} \\
& =\frac{\text { estimated main effect of } A \text { when } B \text { is high }}{2} \\
& -\frac{\text { estimated main effect of } A \text { when } B \text { is low }}{2} \\
& =\frac{\text { estimated main effect of } B \text { when } A \text { is high }}{2} \\
& -\frac{\text { estimated main effect of } B \text { when } A \text { is low }}{2}
\end{aligned}
$$

Interpretation of $\widehat{A B C}$

- $\widehat{A B C}=\frac{1}{2} \widehat{A B}$ interaction when C is at the high level $\frac{1}{2} \widehat{A B}$ interaction when C is at the low level.
- Or, two other possible interpretation with swapped placed for A, B and C.
- And remember that $\widehat{A B}=\frac{1}{2} \widehat{A}$ main effect when B is at the high level $-\frac{1}{2} \widehat{A}$ main effect when B is at the low level.

Geometric interpretation of effects

(b) Two-factor interactions

(c) Three-factor interaction

2^{k} full factorial

- There are k factors: A, B, C, \ldots, and
- 2=each factor has two levels.
- There are 2^{k} possible experiments.
- We have in total 2^{k} parameters to be estimated:
- 1 intercept
- $k=\binom{k}{1}$ main effects: A, B, C, ...
- ($\binom{k}{2}$ two factor interactions: $\mathrm{AB}, \mathrm{AC}, \ldots, \mathrm{BC}, \mathrm{BD}, \ldots$
- $\binom{k}{3}$ three factor interactions: $\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \ldots$
- ...
- $\binom{k}{k}=1 k$ factor interaction.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i} \\
& +\beta_{12} x_{12}+\cdots+\beta_{k-1, k} x_{k-1, k} \\
& +\beta_{123} x_{123}+\cdots+\beta_{k-2, k-1, k} x_{k-2, k-1, k} \\
& \cdots+\beta_{12 \ldots k} x_{12 \ldots k}
\end{aligned}
$$

