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Last lesson - and today:

I Observational studies vs. designed experiments.
I Still linear regression, but now with k factors each with only 2

levels.
I Effect coding, orthogonal columns in design matrix.
I 2k full factorial design.
I Simplified formulas for β̂, Cov(β̂) and SSE.
I From parameter estimated to main and interaction effects.
I Inference.
I Compulsory exercise 4: the DOE project

Part 4 is based on Tyssedal: Design of experiments note.
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Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters,
page 321.

I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of lima bean (baby or large)
I Y: yield

Research question: what is the combination of A, B, C giving the
highest yield?
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Design of experiments (DOE) terminology

I Variables are called factors, and denoted A, B , C , ...
I We will only look at factors with two levels:

I high, coded as +1 or just +, and,
I low, coded as −1 or just −.

I The lima beans example had three factors with two levels, thus
23 = 8 possible combinations. In general k factors with two
levels gives 2k possible combinations.

Standard notation for 23 experiment (responses for lima beans
included)

A B C AB AC BC ABC Level code Response
- - - + + + - 1 6
+ - - - - + + a 4
- + - - + - + b 10
+ + - + - - - ab 7
- - + + - - + c 4
+ - + - + - - ac 3
- + + - - + - bc 8
+ + + + + + + abc 5
x1 x2 x3 x12 x13 x23 x123 y
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Results from last lecture: 2k full factorial

Known from Part 2: β̂ = (XTX )−1XTY and
Cov(β̂) = σ2(XTX )−1.

I The design matrix is chosen so that the columns (containing
-1 and 1) are orthogonal, and thus

I
∑n

i=1 xijxik = 0 for all combinations of the columns of the
design matrix X .

I
∑n

i=1 x
2
ij = n.

I The orthogonal columns lead to that the following formulas
are easy to interpret and calculate:

I XTX = diagonal matrix with n on the diagonal.
I β̂j =

1
n

∑n
i=1 xijYi .

I Var(β̂j) = σ2

n .
I Cov(β̂j , β̂k) = 0 for all j 6= k .
I SSR=

∑p−1
j=1 β̂

2
j .

See class notes for L17 for details on the derivation.
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Lima beans example: full 23 factorial design
I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of lima bean (baby or large)
I Y: yield

A B C AB AC BC ABC Level code Response
- - - + + + - 1 6
+ - - - - + + a 4
- + - - + - + b 10
+ + - + - - - ab 7
- - + + - - + c 4
+ - + - + - - ac 3
- + + - - + - bc 8
+ + + + + + + abc 5
x1 x2 x3 x12 x13 x23 x123 y

Write down the regression model with all possible interactions, and
find β̂j =

1
n

∑n
i=1 xijYi for the A and the AB columns.
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Main effects in DOE

Main effect of A

Â = 2β̂1

=
y2 + y4 + y6 + y8

4
− y1 + y3 + y5 + y7

4

Interpretation: mean response when A is high MINUS mean
response when A is low.
Similarily, main effect of B

B̂ = 2β̂2

=
y3 + y4 + y7 + y8

4
− y1 + y2 + y5 + y6

4

Interpretation: mean response when B is high MINUS mean
response when B is low.
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Explain the main effects in plain words!

A: depth (0.5 or 1), B: watering daily (once, twice), C: type (baby, large).
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Interaction effect in DOE

I What is the terpretation in DOE associated with β12?
I In DOE 2β̂12 is denoted ÂB and is called the estimated

interaction effect between A and B .

ÂB = 2β̂12

=
estimated main effect of A when B is high

2

− estimated main effect of A when B is low
2

=
estimated main effect of B when A is high

2

− estimated main effect of B when A is low
2
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Interaction plot matrix for y
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Interpretation of ÂBC

I ÂBC = 1
2 ÂB interaction when C is at the high level -

1
2 ÂB interaction when C is at the low level.

I Or, two other possible interpretation with swapped placed for
A, B and C .

I And remember that ÂB = 1
2 Â main effect when B is at the

high level - 1
2 Â main effect when B is at the low level.
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R: DOE set-up for lima beans

> library(FrF2)
> plan <- FrF2(nruns=8,nfactors=3,randomize=FALSE)
creating full factorial with 8 runs ...
> plan

A B C
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1
class=design, type= full factorial

But, the experiment should be performed in random order. We use R to
find the random order, and then we choose randomize=TRUE. I have
used randomize=FALSE here because the y-values were easier to read in
in standard order.
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R: DOE add response

> y <- c(6,4,10,7,4,3,8,5)
> y
[1] 6 4 10 7 4 3 8 5
> plan <- add.response(plan,y)
> plan

A B C y
1 -1 -1 -1 6
2 1 -1 -1 4
3 -1 1 -1 10
4 1 1 -1 7
5 -1 -1 1 4
6 1 -1 1 3
7 -1 1 1 8
8 1 1 1 5
class=design, type= full factorial
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R: DOE lm and effect

> lm3 <- lm(y~(.)^3,data=plan)
> MEPlot(lm3)
> IAPlot(lm3)
> effects <- 2*lm3$coeff
> effects
(Intercept) A1 B1 C1 A1:B1 A1:C1 B1:C1 A1:B1:C1
11.75 -2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25
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2k full factorial
I There are k factors: A, B, C, ..., and
I 2=each factor has two levels.
I There are 2k possible experiments.
I We have in total 2k parameters to be estimated:

I 1 intercept
I k =

(
k
1

)
main effects: A, B, C, ...

I
(
k
2

)
two factor interactions: AB, AC, .., BC, BD,...

I
(
k
3

)
three factor interactions: ABC, ABD, ABE, ...

I · · ·
I
(
k
k

)
= 1 k factor interaction.

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk

+ β12x12 + · · ·+ βk−1,kxk−1,k

+ β123x123 + · · ·+ βk−2,k−1,kxk−2,k−1,k

· · · +β12...kx12...k + ε
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Geometric interpretation of effects
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Lima beans: significant effects?

A

y

−1 1

4
4.

5
5

5.
5

6
6.

5
7

7.
5

B

−1 1

C

−1 1

Main effects plot for y
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Lima beans: significant effects?

> summary(lm3)

Call:
lm.default(formula = y ~ (.)^3, data = plan)

Residuals:
ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.875 NA NA NA
A1 -1.125 NA NA NA
B1 1.625 NA NA NA
C1 -0.875 NA NA NA
A1:B1 -0.375 NA NA NA
A1:C1 0.125 NA NA NA
B1:C1 -0.125 NA NA NA
A1:B1:C1 -0.125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1,Adjusted R-squared: NaN
F-statistic: NaN on 7 and 0 DF, p-value: NA
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Estimation of σ2

1. Perform replicates, estimate the full model and use s2 from
regression model.

2. Assuming specified higher order interactions are zero
(changing the regression model).

3. If the two above is not possible: Lenth’s Pseudo Standard
Error (PSE).
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Three factors in three full replicates

I Lima beans experiment from Box, Hunter, Hunter page 321.
I A: depth of planting (0.5 inch or 1.5 inch)
I B: watering daily (once or twice)
I C: type of limabean (baby or large)
I Y: yield

I r = 3: Performed in three full replicate experiments, i.e. three
measurements for each combination of A, B and C.

I We then have (r − 1)23 = 2 · 8 = 16 degrees of freedom for
estimating the error variance.

I Estimates follow automatically. Perform this for yourself. R
code on course www-page.
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ANOVA output: R

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 28.167 28.167 52.0000 2.075e-06 ***
B 1 37.500 37.500 69.2308 3.319e-07 ***
C 1 24.000 24.000 44.3077 5.517e-06 ***
A:B 1 0.667 0.667 1.2308 0.2837
A:C 1 0.167 0.167 0.3077 0.5868
B:C 1 0.167 0.167 0.3077 0.5868
A:B:C 1 0.000 0.000 0.0000 1.0000
Residuals 16 8.667 0.542
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Back to no extra replicates: Lima beans with only main
effects

> lm1 <- lm(y~.,data=plan)
> summary(lm1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.8750 0.2165 27.135 1.1e-05 ***
A1 -1.1250 0.2165 -5.196 0.00653 **
B1 1.6250 0.2165 7.506 0.00169 **
C1 -0.8750 0.2165 -4.041 0.01559 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6124 on 4 degrees of freedom
Multiple R-squared: 0.9614,Adjusted R-squared: 0.9325
F-statistic: 33.22 on 3 and 4 DF, p-value: 0.002755
> anova(lm1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 10.125 10.125 27.000 0.006533 **
B 1 21.125 21.125 56.333 0.001686 **
C 1 6.125 6.125 16.333 0.015585 *
Residuals 4 1.500 0.375
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Back to no extra replicates: Assuming specified higher order
interactions are zero
Result that is JUST a curiosity

I In general
Êffect j ∼ N(Effect j , σ2

effect)

I If we assume that the effect is zero (βj = 0), then
E(Effectj) = 0 and

E(Êffect
2
j ) = σ2

effect

I Thus Êffect
2
j is an unbiased estimator of σ2

effect if βj = 0.
I If several effects are assumed to be 0, we use the average of

the Êffect
2
j to estimate σ2

effect .

24 / 45



Lima beans estimated effects: full model

Estimated effects (2*coeff):
(Intercept) A1 B1 C1 A1:B1 A1:C1 B1:C1 A1:B1:C1

11.75 -2.25 3.25 -1.75 -0.75 0.25 -0.25 -0.25

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(>F)

A 1 10.125 10.125
B 1 21.125 21.125
C 1 6.125 6.125
A:B 1 1.125 1.125
A:C 1 0.125 0.125
B:C 1 0.125 0.125
A:B:C 1 0.125 0.125
Residuals 0 0.000
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Lenth’s PSE
Let C1,C2, . . . ,Cm be estimated effects, e.g. Â, B̂, ÂB , etc.
1. Order absolute values |Cj | in increasing order.
2. Find the median of the |Cj | and compute preliminary estimate

s0 = 1.5 ·medianj |Cj |

3. Take out the effects Cj with |Cj | ≥ 2.5 · s0 and find the median
of the rest of the |Cj |. Then PSE is this median multiplied by
1.5, i.e.

PSE = 1.5 ·median{|Cj | : |Cj | < 2.5s0}

and this is Lenth’s estimate of σeffect .
4. Lenth has suggested empirically that the degrees of freedom to

be used with PSE is m/3 where m is the initial number of
effects in the algorithm (intercept not included). Thus we
claim as significant the effects for which |Cj | > tα/2,m/3 · PSE .
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R: Pareto plot for Lima beans

A1:C1
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B1:C1

A1:B1

C1

A1

B1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Pareto plot: ordered histogram of absolute value of estimated
effects, Length sign line added.
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Which ν?

From the previous slide, connection between ν and your chosen
estimation method for σ and σeffect .
1. If you have performed the 2k experiment r times, then
ν = (r − 1)2k .

2. If m effects (preferrable higher order interactions) are assumed
to be zero, then ν = m.

3. When Lenth’s PSE is used, the degrees of freedom is

ν =
2k − 1

3

where 2k − 1 is the number of effects in the model, while the 3
in the denominator has been found empirically by Lenth.
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DOE workflow

1. Set up full factorial design with k factors in R, and
2. randomize the runs.
3. Perform experiments, and enter data into R.
4. Fit a full model (all interactions) - make Pareto-plot

(with/without red line).
5. If you do not have replications, refit the data to a reduced

model.
6. Assess model fit (residual plots, need transformations?).
7. Construct confidence intervals, assess significance.
8. Interpret you results (main and interaction plots).
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Example compulsory project
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Response: length of plant after 8 days of growing.
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The experiments
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Full model
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Full model
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Inference

A, C and D, AC and CD found to be significant.

35 / 45



Interpretation: Interaction plots
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The practical issues (1)

I You may work alone, or in groups of two.
I You need to perform a multiple regression experiment

consisting of 16 trials - that is, n=16 observations.
I The response that is measure should be continuous, so that

the response itself or a transformation of the response in a
regression model can be seen to be normally distributed. ( It is
also possible to assume that a response with at least 7 ordered
categories can be seen as continuous.)

I You choose 3 or 4 factors with two levels each that might
influence your response (it is possible to choose more factors,
but then you need to do a so called fractional factorial design
to be lectured soon).
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The practical issues (2)

I If you choose 3 factors you need to perform all possible
combinations of the 3 factors two times (2·2·2=8), if you
choose 4 factors you need to perform all possible combinations
only once (2 · 2 · 2 · 2 = 16). If you choose more than 4 factors
you need to study the “factional factorials” to find out which
of the possible combinations you perform.

I A very important aspect of performing the 16 trials is that the
trials should be independent and performed in a randomized
order (why?). You use R to randomize the experiments for you.

I Each experment should be a complete new experiment - a
genuine run replicate, unless you use blocking (not lectured
yet). For example a block effect my be person or day.
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Genuine run replicates

"When genuine run replicates are made under a given set of
experimental conditions, the variation between the associated
observations may be used to estimate the standard deviation of the
effects. By genuine run replicated we mean that variation between
runs made at the same experimental conditions is a reflection of the
total variability afflicting runs made at different experimental
conditions. This point requires careful consideration."
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.
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Genuine run replicates

Randomization of run order usually ensures that replicates are
genuine. Pilot plant example: each run consists of
1. cleaning the reactor
2. inserting the appropriate catalyst carge
3. running the apparatus at at given temperature and a given

feed concentration for 3 hrs to allow the process to settle
down at the chosen experimental conditions, and

4. combining chemical analyses made on these samples.
A genuine run replicate must involve the taking of all these steps
again. In particular, several chemical analyses from a single run
would provide only an estimate of analytical variance, usually only a
small part of the run-to-run variance.
From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.10.6.

40 / 45



The practical issues (3)

I After you have performed all 16 experiments you need to
record the response and enter it into the experiment you have
designed in R.

I Then you analyze the data, estimate effects, perform
inference, check the model assumptions (RESIDUALS!), and
explain your findings.
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The report (1)

1. Describe the problem you want to study. Why is this
interesting? What prior knowledge do you have? What do you
want to achieve?

2. Selection of factors and levels: Which factors do you think are
relevant to the problem described above? Which of these
factors do you think is active/inert? Do you expect an
interaction between some of the factors? Which levels should
be used, and why do you think these are reasonable? How can
you control that the factors really are at the desired level?

3. Selection of response variable: Which response variable will
provide information about the problem described above? Are
there several response variables of interest? How should the
response be measured? What can you say about the accuracy
of these measurements?
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The report (2)

4. Choice of design: 2 k factorial, 2 k-p fractional factorial
(resolution?)? Is it necessary or desirable to use a blocked
design? Is it necessary or desirable with replicates?

5. Implementation of the experiment: Randomization. Describe
any problems with the implementation.

6. Analysis of data: Calculation of effects and assessment of
statistical significance. Use Lenth (not only), replicates or
“setting some interactions to zero” to perform inference?
Check the assumptions. RESIDUAL PLOTS!

7. Conclusion (explain main and interaction plots) and
recommendations: Which conclusions can you draw from the
experiment?

To get 10 points you need to have addressed all of these aspects in
a correct manner! BUT - don’t hand in more than 8 pages
(included printout from R and plots)!
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I don’t want to collect data!

I Well, it is possible to instead analyse a observational data set
(but talk to the lecturer first),

I or to perform a simulation experiment to investigate properties
of the regression model.
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Supervision?

I See course page - several possibilities until deadline for hand-in
on Tuesday May 2.
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