TMA4267 Linear Statistical Models V2017 (L19) Part 4: Design of Experiments Blocking Fractional factorial designs

Mette Langaas

Department of Mathematical Sciences, NTNU

To be lectured: March 28, 2017

DOE workflow

- 1. Set up full factorial design with k factors in R, and
- 2. randomize the runs.
- 3. Perform experiments, and enter data into R.
- 4. Fit a full model (all interactions).
- 5. If you do not have replications, look at Pareto plots and, use this to suggest at reduced model (if possible). Refit the reduced model.
- 6. Assess model fit (residual plots, need transformations?).
- 7. Assess significance.
- 8. Interpret you results (main and interaction plots).

Q: Randomization

Why do you need to randomize the order in which you perform the experiments?

To make the experiments

- A: random.
- B: robust to external factors.
- C: have constant variance.
- D: independent.

Vote at clicker.math.ntnu.no, TMA4267 classroom.

"When genuine run replicates are made under a given set of experimental conditions, the variation between the associated observations may be used to estimate the standard deviation of the effects. By *genuine* run replicated we mean that variation between runs made at the same experimental conditions is a reflection of the total variability afflicting runs made at different experimental conditions. This point requires careful consideration." From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.

Genuine run replicates

Randomization of run order usually ensures that replicates are genuine. Pilot plant example: each run consists of

- 1. cleaning the reactor
- 2. inserting the appropriate catalyst charge
- 3. running the apparatus at at given temperature and a given feed concentration for 3 hrs to allow the process to settle down at the chosen experimental conditions, and
- 4. combining chemical analyses made on these samples.

A genuine run replicate must involve the taking of all these steps again. In particular, several chemical analyses from a single run would provide only an estimate of *analytical* variance, usually only a small part of the run-to-run variance. From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.

Pilot plant: A, B and C

/ .— 1											
A	B	C	AB	AC	BC	ABC	Level code	Response			
-	-	-	+	+	+	-	1	60			
+	-	-	-	-	+	+	а	72			
-	+	-	-	+	-	+	b	54			
+	+	-	+	-	-	-	ab	68			
-	-	+	+	-	-	+	с	52			
+	-	+	-	+	-	-	ac	83			
-	+	+	-	-	+	-	bc	45			
+	+	+	+	+	+	+	abc	80			
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₁₂	<i>x</i> ₁₃	x ₂₃	<i>x</i> ₁₂₃		у			

A=Temperature, B=Concentration, C=Catalyst, Y=yield.

Blocking on ABC

Block 1 consists of experiments with ABC=-1. Block 2 consists of experiments with ABC=1.

C1	C2	ជ	C4	CS	C6	C7	C8	C9	C10	C11	
StdOrder	RunOrder	CenterPt	Blocks	Α	В	С	ABC		Y	block effect	
1	1	1	1	-1	-1	-1	-1	1	60	60	
4	4	1	1	-1	1	1	-1	7	45	45	
3	3	1	1	1	-1	1	-1	6	83	83	
2	2	1	1	1	1	-1	-1	4	68	68	
7	7	1	2	-1	-1	1	1	5	52	62	
6	6	1	2	-1	1	-1	1	3	54	64	
5	5	1	2	1	-1	-1	1	2	72	82	
8	8	1	2	1	1	1	1	8	80	90	

Blocking on ABC

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
StdOrder	RunOrder	CenterPt	Blocks	Α	В	С	ABC		Y	block effect
1	1	1	1	-1	-1	-1	-1	1	60	60
4	4	1	1	-1	1	1	-1	7	45	45
3	3	1	1	1	-1	1	-1	6	83	83
2	2	1	1	1	1	-1	-1	4	68	68
7	7	1	2	-1	-1	1	1	5	52	62
6	6	1	2	-1	1	-1	1	3	54	64
5	5	1	2	1	-1	-1	1	2	72	82
8	8	1	2	1	1	1	1	8	80	90

- ► ABC is counfunded with the block effect. We can not separate these two effects from eachother.
- Suppose all values in block 2 is increased by 10 units.
 - Then the estimated effect of ABC will increase by 10.
 - But all other estimated effects remain unchanged and these are the most important to estimate.

а		Added 10 to all obs in Block 2.				
Fit: C		Factorial Fit: "block effect" versus Block A B C				
Effect	Coef					
		Term	Effect	Coef		
	64,250	Constant		69,250		
	-0,250	Block		-5,250		
23,000	11,500	А	23,000	11,500		
-5,000	-2,500	В	-5,000	-2,500		
1,500	0,750	С	1,500	0,750		
1,500	0,750	A*B	1,500	0,750		
10,000	5,000	A*C	10,000	5,000		
0,000	0,000	B*C	0,000	0,000		
	a Fit: C Effect 23,000 -5,000 1,500 1,500 10,000 0,000	a Fit: C Effect Coef 64,250 -0,250 23,000 11,500 -5,000 -2,500 1,500 0,750 1,500 0,750 10,000 5,000 0,000 0,000	Added 10 t Fit: Factorial "block ef C Block A B Effect Coef Constant -0,250 Block 23,000 11,500 A -5,000 -2,500 B 1,500 0,750 C 1,500 0,750 A*B 10,000 5,000 A*C 0,000 0,000 B*C	a Added 10 to all obs i Fit: Factorial Fit: "block effect" ve C Block A B C Effect Coef Term Effect 64,250 Constant -0,250 Block 23,000 11,500 A 23,000 1,500 0,750 C 1,500 1,500 0,750 A*B 1,500 10,000 5,000 A*C 10,000 0,000 0,000 B*C 0,000		

2^3 with four blocks

We need two generators (columns) to define four blocks: the optimal choice is AB and AC

- Block 1: AB=AC=-1 (- -)
- Block 2: AB=-1, AC=1 (- +)
- Block 3: AB=1, AC=-1 (+ -)

Std order	А	В	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
5	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

$2^3 \mbox{ with AB}$ and AC as generators

Std order	A	В	C	AB	AC	BC	ABC	Block
2	+	-	-	-	-	+	+	1
7	-	+	+	-	-	+	-	1
3	-	+	-	-	+	-	+	2
6	+	-	+	-	+	-	-	2
4	+	+	-	+	-	-	-	3
5	-	-	+	+	-	-	+	3
1	-	-	-	+	+	+	-	4
8	+	+	+	+	+	+	+	4

2^3 with AB and AC as generators

- Interaction effects AB and AC are confounded with the block effect, since they are the generators.
- ► Their product, AB * AC = A²BC = BC, is alco confounded with the block effect (see that BC is constant within each block).
- ► Adding h₂ to block 2, h₃ to block 3 and h₄ to block 4 does not change the estimated main effects A, B, or C, and not the interaction effect ABC.
- ► However, AB will change with 2 · h₃ + 2 · h₄ 2 · h₂, and we will NOT be able to separate the true AB effect from the block effect.

How to choose which blocks to be used for blocking?

- Idea: try to leave estimates for main effects and low order interaction unchanged by the blocking.
- ► Note: I=AA=BB=CC, where I is a column of 1's.
- How NOT to do this:
 - Find the blocks for a 2³ experiment using generators ABC and AC.
 - ► The interaction between ABC and AC is ABC*AC=B.
 - This means chosing ABC and AC is not a good idea since then we can not trust our estimate of B.

Questions

Should you use a blocking factor in your compulsory project? Do you understand the difference between blocking and repetition? Box, Hunter, Hunter: Reactor example

- A=feed rate (liters/min).
- B=Catalyst (%).
- C=Agitation rate (rpm).
- D=Temperature (deg C).
- E=Concentration (%).
- ▶ Response= (%) reacted.

Full factorial with $2^5 = 32$ experiments. From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.

Reactor data: standard order

DЕу A B C -1 -1 -1 -1 -1 61 1 2 1 -1 -1 -1 -1 53 3 -1 1 -1 -1 -1 63 4 1 1 -1 -1 -1 61 -1 -1 5 1 -1 -1 53 6 1 -1 1 -1 -1 56 7 -1 1 1 -1 -1 54 8 1 -1 -1 61 1 1 9 -1 -1 -1 1 -1 69 10 1 -1 -1 1 -1 61 11 -1 1 -1 94 1 -1 12 1 1 -1 1 -1 93 13 -1 -1 1 -1 66 1 14 1 -1 1 1 -1 60 1 1 -1 95 15 -1 1 16 1 1 1 1 -1 98

17	-1	-1	-1	-1	1	56
18	1	-1	-1	-1	1	63
19	-1	1	-1	-1	1	70
20	1	1	-1	-1	1	65
21	-1	-1	1	-1	1	59
22	1	-1	1	-1	1	55
23	-1	1	1	-1	1	67
24	1	1	1	-1	1	65
25	-1	-1	-1	1	1	44
26	1	-1	-1	1	1	45
27	-1	1	-1	1	1	78
28	1	1	-1	1	1	77
29	-1	-1	1	1	1	49
30	1	-1	1	1	1	42
31	-1	1	1	1	1	81
32	1	1	1	1	1	82

Pareto and Normal plot

Redundancy

- ► The number of runs in a full 2^k factorial design increases geometrically when k is increased.
- E.g. k = 7 factors gives $2^7 = 128$ runs and we can estimate

•
$$\binom{7}{1} = 7$$
 main effects

•
$$\binom{7}{2} = 21$$
 2nd order interactions

• $\binom{7}{3} = 35$ 3rd order interactions

•
$$\binom{7}{4} = 35$$
 4th order interactions

•
$$\binom{7}{5} = 21$$
 5th order interactions

•
$$\binom{7}{6} = 7$$
 6th order interactions

•
$$\binom{7}{7} = 1$$
 7th order interactions

Redundancy (cont.)

- There is a hierarchy in absolute magnitude: the main effects tend to be larger than the 2nd order interactions, which tends to be larger than the 3rd order interactions, which ...
- At some point higher order interactions tend to become negligible and can be discarded.
- If many factors are introduced into a design, it often happens that some have *no* distinguishable effect at all.
- Fractional factorial designs exploit this redundancy!

Full 2³ factorial experiment

How can we accomodate four factors here?

Std order	Α	В	C	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
5	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

Full 2^3 factorial experiment - turned into 4-factor experiment

	А	В	C	AB	AC	BC	D=ABC	ABD	ACD	BCD	ABCD
1	-	-	-	+	+	+	-	-	-	-	+
2	+	-	-	-	-	+	+	-	-	+	+
3	-	+	-	-	+	-	+	-	+	-	+
4	+	+	-	+	-	-	-	-	+	+	+
5	-	-	+	+	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-	+	-	+	+
7	-	+	+	-	-	+	-	+	+	-	+
8	+	+	+	+	+	+	+	+	+	+	+

Half fraction of 2⁴

- The design is called 2_{IV}^{4-1} .
- ► D=ABC is called the *generator* for the design.
- ► I=ABCD is called the *defining relation* for the design.
- The design is said to have *resolution IV*.
- ► The *alias structure* defines which effects are confounded:
 - ► A+BCD, B+ACD, C+ABD, D+ABC.
 - ► AB+CD, AC+BD, BC+AD.

 Why may experiments need to be performed in blocks? (Batches of raw material, performed on different days, different people performing the experiments.)

- Why may experiments need to be performed in blocks? (Batches of raw material, performed on different days, different people performing the experiments.)
- Should we also add a "block" effect if we perform repeated experiments? (Sometimes. If done by different people, or external factors have changed.)

- Why may experiments need to be performed in blocks? (Batches of raw material, performed on different days, different people performing the experiments.)
- Should we also add a "block" effect if we perform repeated experiments? (Sometimes. If done by different people, or external factors have changed.)
- Should then the block effect be a part of the regression model? (In most cases: yes!)

- Why may experiments need to be performed in blocks? (Batches of raw material, performed on different days, different people performing the experiments.)
- Should we also add a "block" effect if we perform repeated experiments? (Sometimes. If done by different people, or external factors have changed.)
- Should then the block effect be a part of the regression model? (In most cases: yes!)
- Why don't we want to perform a full factorial experiment, but a instead a fractional factorial? (If we have many factors we maybe not need to be able to estimate all possible interactions, and may accept that effects are confounded.)

▶ What is the easiest way to design a half-fraction of a 2^k factorial experiment? (Perform all the experiments where the highest order interaction =-1 or +1. E.g. for k=4 we may do 16 different experiments, and now we only do the 8 possible experiments where ABCD=+1=defining relation. This is the same as thinking that D=ABC=generator).

- ▶ What is the easiest way to design a half-fraction of a 2^k factorial experiment? (Perform all the experiments where the highest order interaction =-1 or +1. E.g. for k=4 we may do 16 different experiments, and now we only do the 8 possible experiments where ABCD=+1=defining relation. This is the same as thinking that D=ABC=generator).
- ▶ New words: generator(s), defining relation(s), resolution.

- ► What is the easiest way to design a half-fraction of a 2^k factorial experiment? (Perform all the experiments where the highest order interaction =-1 or +1. E.g. for k=4 we may do 16 different experiments, and now we only do the 8 possible experiments where ABCD=+1=defining relation. This is the same as thinking that D=ABC=generator).
- ▶ New words: generator(s), defining relation(s), resolution.
- Next time: more on interpreting "confounding", interpreting "resolution" and more fractional factorial experiments